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1. Motivation

Background

Information Information

———————————————————————————————————————————

Time propagation
by the model

* Information carried to analysis: How much
from obs ? How much from background?

—0One way to quantify this: Degrees of Freedom
for Signal (DFS, or information content).
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2. What is DFS?

 Defined as the trace tr(S) of the “influence matrix” S = (HK)T = 9y

dy°

* Shown to behave similarly to Shannon entropy reduction under some
conditions (Fisher 2003, ECMWF tech memo #397):

tr(S) = [H(x|xb) — H(x|xb,y°)] X const.

* Two ways to interpret:
1.  Analysis sensitivity to observations measured in obs space.
2. The amount of information that the analysis extracted from observations.

Simple illustrative examples:
- Forecast-Forecast cycle: analysis is always the same as the background.
- y? = yP > Sis null, DFS=tr(S) = 0 (0% information from obs.)
- Direct Insertion: background is completely replaced by the obs.
- y? =y° - Sisidentity, DFS = tr(S) = #obs
- DFS perobs =1 (100% information comes from obs. )
@):
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2. What is DFS?

e First introduced to NWP by Fisher (2003) and Cardinali et al. (2004)

* Popular diagnostics for variational DA systems.

— Routinely monitored by several NWP centers (e.g. ECMWF, Météo-
France)

* Liuetal. (2009) derived a simple method to compute DFS for EnKF:

_9y

dy° K-1

e Verified in Liu et al. (2009) with a simple AGCM (SPEEDY) in an
idealized “identical-twin” scenario, but

a

S = (HK)" = R"'THAH' » R™I(YH)(Y)T

 Up to present, not yet applied to operational Ensemble DA with real
observations.
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3. Ensemble-based DFS diagnhostics at JMA

3-1. Experimental set-up

e DA system: hybrid LETKF/4D-Var coupled with JMA GSM
— Resolution: (outer) TL959L100 ; (inner and ensemble) T319L100
— Window: 6 hours (analysis time +/- 3 hours)
— B weights: 77% from static, 23% from ensemble
— Member size: 50

— Localization scales (e-folding):
* LETKF: Horizontal: 400km, Vertical: 0.4 scale heights
* A4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights

— Covariance Inflation: Adaptive inflation of Miyoshi (2011)
* DFS estimation Algorithms:

— Liu et al. (2009) étr(R‘l(Ya)(Ya)T)

— also tried the residual-based method of Lupu et al. (2011) as a double
check:

» tr(HK) = tr(R7E(d}(d3)T)), R = E(d3(d2)T) with the expectation
evaluated as the average over a period and samples, assuming ergodicity
and homogeneity

@):
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3. Ensemble-based DFS diagnostics at JMA

LETKF within JMA hybrid DA

DFS per obs (201307106-2013071500,Globe) OI=1.58,0.68
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Reasonable agreement between the two methods (at least for conventional obs).

3-2. Results: DFS per obs

c.f. ECMWEF 4D-Var (as of 2011)

from Cardinali (2013; ECMWEF lecture notes)
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Shockingly small observational impact:
— for JMA only about 1% of information comes from observations,
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3. Ensemble-based DFS diagnostics at JMA

3-2. Results: DFS per obs
c.f. ECMWEF 4D-Var (as of 2011)

LETKF within JMA hybrid DA

DFS per obs (201307106-2013071500,Globe) OI=1.58,0.68

from Cardinali (2013; ECMWEF lecture notes)

Self-Sensitivity [%]

T T T T T 1

| Global average:

1.58% 0.68%

T T T T 1T

T T T T T T T T T
Liu et al. (2009)

Lupu et al. (2011)

Satellite radiances

S5 F Conventional

ilidipnen L

03

i GOES-Rad
MTSAT-Rad

CSR ‘{.AAETRad
MSU-B

1
=
=

- MTSAT-AMV
GOES-AMV

@)

Japan Mete

dIHS
Aong
3ANOSOIavy -
1071d

dONAS -
14VdDNHIV -

SNO0YAL -

WL

ISVI -
|
4SSV

Y371404d
V13ASSNO
OYSSNO -
O3ONWY |
OFTAWY
VNSKWY |-
SYIV

SHW
ANIMLVOS -
SINSS

A

Observation type

ys) -

—— Satellite radiances

:Globaél averige: 18:%

Satelliteinon-raidiance

Conventional

DFS particularly small for dense observations, satellite radiances in particular
(except AMSU-A and CSR").

* CSR: Clear Sky Radiances measured by infrared imagers on geostationary satellites (MTSAT,
GOES and Meteosat)
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4. Ensemble-based DFS for NCEP GFS hybrid GSI

EnSRF

LETKF
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To discern if the “very
small DFS problem” is
merely an idiosyncrasy of
JMA, we computed DFS
for NCEP’s lower-
resolution version of
GFS/GSI hybrid DA as
well.

Results: DFS is very small
for NCEP’s system as
well.

systems.

- “Small DFS problem” possibly universal to all EnKF
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5. Why DFS so small for EnKF?

 Our Answer: not enough ensemble size.
 We can show, for a local analysis in LETKF, that:
tr(Sioc) = tr(K Hp) = tr(HjoKjoe) < K — 1

 i.e., DFS is bounded from above by the degrees of freedom of the background
ensemble. See the next slide for proof.

e The number of observations locally assimilated, p,¢, is ~ 0(103), much larger
than the member size K = 50.

* Suppose, for convenience, that each observation locally assimilated has
comparable DFS, and that the observation density can be assumed homogeneous.

Then, we can assume that, locally, (DFS per obs) ~ , Which gives:

loc
K—-1

DFSgiobal = Ziall obs(DFS per obs )iocal ~ Pgiobal X - —

DFSglobal - K-1

— (DFS per obs )gjopal= , which, for our system, is % ~ 0(1%)

Pglobal Ploc

®)
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6. Implications

 We have seen that, for an EnKF with ensemble size K much smaller
than the number of the locally assimilated observations pj,.

(P1oc > K), DFS is inevitably bounded by the member size K and

hence automatically underestimated-(=.STa"e||2It=r)lalrl whatitshodidbe
In true
* This means that such a system cannot fully extract information from

observations.
 We believe this fact has a lot of important implications, e.g., on:
1. why drastic observation thinning does not harm performance,
2. why covariance inflation is necessary,

3. what the localization scale should be, given the ensemble size
and observation density,

4. how, in serial assimilation, the order of assimilating
observations affects the accuracy of the analysis ...etc.

@):
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(= smaller than what it should be
   in true KF)


6-1. Implication for observation thinning
(highly speculative)

* Hamrud et al. (2015 Part |; MWR) reports that, in ECMWF’s LETKF local analysis,
limiting the number of assimilated observations to only 30 per report type and
element improves forecast performance while achieving dramatic computational
saving at the same time.

— Similar result was also obtained with JMA’s LETKF (Ota 2015, “adjoint Workshop”).
— Talk by Guo-Yuan Lien on Thursday on Radar assimilation

* This fact “using less obs is better” seems counterintuitive and difficult to interpret (at
least to me).

* DFS discussion could provide a plausible interpretation (justification):
— In LETKF local analysis, the amount of information extractable from observations (=DFS) is
limited by the ensemble member size.
— Thus, assimilating too many observations beyond this limit only adds noises rather than
signal.
— -2 Assimilating observations within the limit of DFS imposed by the member size reduces
noises and improves analysis.
* Related to the argument above, in a situation where thinning of observations is
necessary (dense obs, e.g. radiance, radar, aircraft etc.) DFS could be used to guide in

choosing which obs to assimilate.
W E

Japan Meteorological Agency 12 Numerical Prediction Division




6-2. Implication on covariance inflation
(highly speculative)
* If the ensemble size is insufficient, DFS=tr(R"'HAHT) is underestimated.

* - The analysis error covariance A is also underestimated.

« - Need to inflate A smaller than what
' we expect from true KF

* Traditionally, nonlinearity and model errors are considered to be the
source of necessity for covariance inflation  g_uBm™+ Q
— It is B rather than A that need inflation.
— This is true for Extended Kalman Filter.

e The inherent underestimation of DFS could be another mechanism behind
the need for covariance inflation.

* This argument gives intuitive explanation as to why Relaxation-to-prior
methods of Zhang et al. (2004) and Whitaker and Hamil (2012) are so
successful:

— underestimation of DFS (= posterior spread in obs space) is severer
when/where observations are denser

@ — Relaxation-to-prior methods act to inflate A more exactly in such a situation.
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smaller than what 
we expect from true KF

B=MBM  + Q

T


6-3. Implication on covariance localization
(highly speculative)

* Traditionally, it is believed that localization is necessary to filter out spurious
correlations in B due to sampling errors.

* From this perspective, observation density/distribution does not come into play.

* The fact that DFS is bounded by the member size provides another criterion for
optimality of localization:
1 1 1 _1 o?
— Let {g;} be the singular values of R zHB:2 (= ﬁR 2Yb>. Then, DFS = }}; 1+la_2
— => DFS will not be underestimated if K-th largest singular value oy is negligibly small.
* This gives a criterion for the optimal member size K given the observation network

(H, R) and background error covariance (B).

* Inversely, given the member size K, we can choose localization scale so that DFS is
not artificially bounded. For this, we can require that the observations within the
localized area are few enough such that g; < 1 forsomei < K.

®)
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6-4. Implication on order of obs. assimilation
in serial EnKF
(highly speculative)

* Given that the total DFS is bounded by the ensemble size, it would make
sense to assimilate the observation with the largest DFS first.

* |n fact, Dr. Jeff Whitaker showed at ISDA 2015 that, in serial EnSRF, the
following procedure improves the analysis:

T
to those

U , : HAH
— assimilating observations from those with the smallest p == ——=
with the largest,

— assigning large localization scale to observations whos p is small.

T _ T
HAR - HUKIBH _ 9 _ HK =1-DFs, i.e., Dr.
HBH HBH

Whitaker’s successful method is equivalent to:

* [tiseasytoseep =

— assimilating observations from largest DFS to those with smallest,
— assigning a larger localization scale to observations with larger DFS

— DFS argument could provide a theoretical justification to his somewhat

empirical but successful method.
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/. Take home messages

 EnKF algorithms inherently underestimate posterior spread
if you (locally) assimilate much more obs than the

ensemble size.
* This limitation is particularly relevant to dense observations
(= Big Data Assimilation issue)
— Theory well developed for cases #state >> #obs ~ #ens
— Not much so for cases #obs >> #ens
 DFS argument provides insight into many important
aspects of Ensemble DA (inflation, localization, thinning,
superobing ...)
e So please start thinking about your problem in terms of

DFS!
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Questions?

A question from me in case nobody has any
guestions to me.

 The “Posterior spread underestimation” issue
occurs whenever rank(HBH') < #obs.

* so Reduced Rank Kalman Filter (RRKF) must
have suffered from the same issue.

Q: Does anybody know whether this issue had
ever been addressed in RRKF context?

Japan Meteorological Agency
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Backup slide

SR MIE T HIE

Japan Meteorological Agency 17 Numerical PredictionDivision




from Yoichiro Ota (2015, Adjoint Workshop)

Hybrid 4DVar-LETKF DA developed in JMA

Analysis resolution
(outer / inner)

T,959L100 (~20km, top:0.01hPa) /

Deterministic part

T,319L100 (~55km, top:0.01hPa)

Deterministic

Assimilation 6 hours (analysis time +/- 3 forecast
window hours) ' l
poria metvon | Eterdedcontl obble |
Weights on B B....=077,8,2=0.23 4‘[{'\/ar e
LETKF resolution T,319L100
Ensemble size 50 {

Localization scale

Horizontal: 800km

(4DVar) Vertical: 0.8 scale heights
Localization scaleHorizontal: 400km, Vertical: 0.4
(LETKF) (0.8 for Ps) scale heights
Cf)varlz.:\nce Adaptive inflation (Miyoshi 2011)
inflation

Ensemble part

Ensemble forecast

Perturbations ‘l,

Ensemble mean

¥

OD Qc

Deterministic
analysis
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Static (Climatological)

background error covariance

Operational global DA at JMA is 4DVar (not hybrid)

Ensemble-based
background error
covariance
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Proof of tr(S;,.) = tr(H;,cKjoo) < K — 1 for LETKF local analysis

In each local analysis of LETKF, DFS can be expressed as
¢ tr(S) = tr(HK) = tr(HAH'R™!) (+ K= AH’R™1)

*  LETKF estimates the analysis error covariance by:

_ ybayb? X _— _ b p-1yb]  _ _1 T7y-1
A=XPAXY, A=[(K-DI+Y' R =-_Z(+270)7, withZ=—=R"

« 1ZTZisa K x K positive semi-definite symmetric matrix. Its eigenvalue decomposition becomes:
Z'Z =UAU L uU 1 =], A = diag(Ay, Ay, o+, Ag)
e Sincerank(Z) = K — 1, A, = 0. From positive semi-definiteness of ZTZ, ;>0 (1 <i < K —1).
* Thus:
HK = HAH"R™! = HXPAX? HTR™! = YPAY? R!

1y~ 147 1 147
= (\/K — 1R2Z)A(\/K — 1R2Z) R~ ! =R2Z(I + ZTZ)_l(RZZ) R™!
*  Because trace is invariant under cyclic reordering,

1 1 N\T 1 1
tr(S) = tr(HK) = tr (RZZ(I + ZTZ)‘l(RZZ) R‘l) = tr(Z(l + ZTZ)‘1ZTR2R‘1R2) =
tr(Z(1 + ZTZ)‘1ZT) =tr(1+272)7'2"Z) = tr ((1 + UAU‘l)_lUAU‘l) =

0

K Ai Ak-1
K = <K-1
=114 1+/11 Tt 1+Ax—1 + 140 —

@)

Japan Meteorological Agency Numerical PredictionDivision




