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1.$MoGvaGon�

•  InformaGon$carried$to$analysis:$How$much$$
from$obs$?$How$much$from$background?$

! One$way$to$quanGfy$this:$Degrees*of*Freedom*
for*Signal*(DFS,*or*informa)on!content).*

��

OBS$ Background$

Analysis$ Time$propagaGon$
by$the$model$$

InformaGon$ InformaGon$

SchemaGc$of$DA$



2. What is DFS? 
• Defined as the trace tr 𝐒  of  the “influence matrix” 𝐒 = 𝐇𝐊 𝐓 = 𝛛𝐲𝐚

𝛛𝐲𝐨
 

 
• Shown to behave similarly to Shannon entropy reduction under some 

conditions (Fisher 2003, ECMWF tech memo #397):  

  tr 𝐒 ≈  𝐻 𝐱|𝐱𝐛 − 𝐻 𝐱 𝐱𝐛, 𝐲𝐨  × const. 
 

• Two ways to interpret: 
1. Analysis sensitivity to observations measured in obs space.  
2. The amount of information that the analysis extracted from observations. 

 
Simple illustrative examples: 
- Forecast-Forecast cycle: analysis is always the same as the background. 

- 𝐲𝐚 ≡ 𝐲𝐛 Æ 𝐒 is null, DFS=tr(S) = 0 (0% information from obs.) 
-  Direct Insertion: background is completely replaced by the obs. 

- 𝐲𝐚 ≡ 𝐲𝐨 Æ 𝐒 is identity, DFS = tr(S) = #obs 
- DFS per obs  = 1 (100% information comes from obs. ) 
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2. What is DFS? 
• First introduced to NWP by Fisher (2003) and Cardinali et al. (2004) 

• Popular diagnostics for variational DA systems. 

– Routinely monitored by several NWP centers (e.g. ECMWF, Météo-
France) 

• Liu et al. (2009) derived a simple method to compute DFS for EnKF: 

𝐒 =
𝛛𝐲𝐚

𝛛𝐲𝐨 = 𝐇𝐊 𝐓 = 𝐑−𝟏𝐇𝐀𝐇𝐓 ≈
𝟏

𝐊 − 𝟏𝐑
−𝟏 𝐘𝐚 𝐘𝐚 𝐓 

• Verified in Liu et al. (2009) with a simple AGCM (SPEEDY) in an 
idealized “identical-twin” scenario, but 

• Up to present, not yet applied to operational Ensemble DA with real 
observations. 
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3. Ensemble-based DFS diagnostics at JMA 
3-1. Experimental set-up 

• DA system: hybrid LETKF/4D-Var coupled with JMA GSM 
– Resolution:  (outer) TL959L100 ; (inner and ensemble) T319L100 

– Window: 6 hours (analysis time +/- 3 hours) 

– B weights: 77% from static, 23% from ensemble 

– Member size: 50 

– Localization scales (e-folding):  
• LETKF:   Horizontal: 400km, Vertical: 0.4 scale heights 

• 4D-Var: Horizontal: 800km, Vertical: 0.8 scale heights 

– Covariance Inflation: Adaptive inflation of Miyoshi (2011) 

• DFS estimation Algorithms:  

– Liu et al. (2009)   
𝟏

𝐊−𝟏
tr(𝐑−𝟏 𝐘𝐚 𝐘𝐚 𝐓) 

–  also tried the residual-based method of Lupu et al. (2011)  as a double 
check: 

• tr 𝐇𝐊 = tr 𝐑 −1𝔼 𝐝b
a 𝐝ao T , 𝐑 = 𝔼 𝐝ao 𝐝b

o T  with the expectation 
evaluated as the average over a period and samples, assuming ergodicity 
and homogeneity 
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3. Ensemble-based DFS diagnostics at JMA 
3-2. Results: DFS per obs 

LETKF within JMA hybrid DA c.f. ECMWF 4D-Var (as of 2011) 
 from Cardinali  (2013; ECMWF lecture notes) 

• Reasonable agreement between the two methods (at least for conventional obs). 

• Shockingly small observational impact: 

– for JMA only about 1% of information comes from observations, 

– whereas it is about 20% in ECMWF 4D-Var 
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3. Ensemble-based DFS diagnostics at JMA 
3-2. Results: DFS per obs 

LETKF within JMA hybrid DA 

• DFS particularly small for dense observations, satellite radiances in particular 
(except AMSU-A and CSR*). 
* CSR: Clear Sky Radiances measured by infrared imagers on geostationary satellites  (MTSAT, 
GOES and Meteosat) 

7 

Global average:  
1.58% 0.68% 

Global average: 18% 

Satellite radiances 

Conventional 

Satellite radiances 

CSR 

Satellite non-radiance 

Conventional 

c.f. ECMWF 4D-Var (as of 2011) 
 from Cardinali  (2013; ECMWF lecture notes) 



4. Ensemble-based DFS for NCEP GFS hybrid GSI 

8 

conventional 

Satellite 
Radiance 

hyperspectral 
sounders 

EnSRF LETKF • To discern if the “very 
small DFS problem” is 
merely an idiosyncrasy of 
JMA, we computed DFS 
for NCEP’s lower-
resolution version of 
GFS/GSI hybrid DA as 
well. 

• Results: DFS is very small 
for NCEP’s system as 
well. 

 
[%] 

Æ “Small DFS problem”  possibly universal to all EnKF 
systems. 



5. Why DFS so small for EnKF? 
• Our Answer: not enough ensemble size. 

• We can show, for a local analysis in LETKF, that: 
  tr 𝐒loc = tr 𝐊loc

𝐓 𝐇loc
𝐓 = tr 𝐇loc𝐊loc ≤ 𝐾 − 1   

• i.e., DFS is bounded from above by the degrees of freedom of the background 
ensemble. See the next slide for proof. 

• The number of observations locally assimilated, 𝑝loc, is ∼ 𝑂 103 , much larger 
than the member size 𝐾 = 50. 

• Suppose, for convenience, that each observation locally assimilated has 
comparable DFS, and that the observation density can be assumed homogeneous. 

• Then, we can assume that, locally, (DFS per obs) ∼ 𝐾−1
𝑝loc

 , which gives:  

DFSglobal =  (DFS per obs )localall obs  ∼ 𝑝global ×
𝐾−1
𝑝loc

  

 →  (DFS per obs )global=
DFSglobal 
𝑝global

∼  𝐾−1
𝑝loc

 , which, for our system, is  
49

4,000
∼ O(1%) 

 

 

9 



6. Implications 
• We have seen that, for an EnKF with ensemble size 𝐾 much smaller 

than the number of the locally assimilated observations 𝑝loc 
(𝑝loc ≫ 𝐾), DFS is inevitably bounded by the member size 𝐾 and 
hence automatically underestimated. 

• This means that such a system cannot fully extract information from 
observations. 

• We believe this fact has a lot of important implications, e.g., on: 

1. why drastic observation thinning does not harm performance, 

2. why covariance inflation is necessary, 

3. what the localization scale should be, given the ensemble size 
and observation density, 

4. how, in serial assimilation, the order of assimilating 
observations affects the accuracy of the analysis  …etc. 
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(= smaller than what it should be
   in true KF)



6F1.*Implica8on*for*observa8on*thinning*
(highly!specula)ve)�

•  Hamrud$et$al.$(2015$Part$I;$MWR)$reports$that,$in*ECMWF’s*LETKF*local*analysis,*
limi8ng*the*number*of*assimilated*observa8ons*to*only*30*per*report*type*and*
element*improves*forecast*performance$while$achieving$dramaGc$computaGonal$

saving$at$the$same$Gme.$

–  Similar$result$was$also$obtained$with$JMA’s$LETKF$(Ota$2015,$“adjoint$Workshop”).$

–  Talk$by$Guo_Yuan$Lien$on$Thursday$on$Radar$assimilaGon$

•  This$fact$“using*less*obs*is*beBer”$seems$counterintui8ve$and$difficult$to$interpret$(at$

least$to$me).$

•  DFS$discussion$could$provide$a$plausible$interpretaGon$(jusGficaGon):$

–  In*LETKF*local*analysis,*the*amount*of*informa8on*extractable*from*observa8ons*(=DFS)*is*
limited*by*the*ensemble*member*size.*

–  Thus,*assimila8ng*too*many*observa8ons*beyond*this*limit*only*adds*noises*rather*than*
signal.*

–  !*Assimila8ng*observa8ons*within*the*limit*of*DFS*imposed*by*the*member*size*reduces*
noises*and*improves*analysis.*

•  Related$to$the$argument$above,$in$a$situaGon$where$thinning$of$observaGons$is$

necessary$(dense$obs,$e.g.$radiance,$radar,$aircraw$etc.)$DFS$could$be$used$to$guide$in$

choosing$which$obs$to$assimilate.$

	��



6-2. Implication on covariance inflation 
(highly speculative) 

• If the ensemble size is insufficient, DFS=tr(𝐑−𝟏𝐇𝐀𝐇𝐓) is underestimated. 

• Æ The analysis error covariance 𝐀 is also underestimated. 

• Æ Need to inflate 𝐀. 
 

• Traditionally, nonlinearity and model errors are considered to be the 
source of necessity for covariance inflation 

– It is B rather than A that need inflation. 

– This is true for Extended Kalman Filter. 

• The inherent underestimation of DFS could be another mechanism behind 
the need for covariance inflation. 

• This argument gives intuitive explanation as to why Relaxation-to-prior 
methods of Zhang et al. (2004) and Whitaker and Hamil (2012) are so 
successful: 

–  underestimation of DFS (= posterior spread in obs space) is severer 
when/where observations are denser 

– Relaxation-to-prior methods act to inflate A more exactly in such a situation. 
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smaller than what 
we expect from true KF

B=MBM  + Q

T



6-3. Implication on covariance localization 
(highly speculative) 

• Traditionally, it is believed that localization is necessary to filter out spurious 
correlations in B due to sampling errors. 

• From this perspective, observation density/distribution does not come into play. 
 

• The fact that DFS is bounded by the member size provides another criterion for 
optimality of localization: 

– Let {𝜎𝑖} be the singular values of 𝐑−1
2𝐇𝐁

1
2 = 𝟏

K−1
𝐑−𝟏𝟐𝐘𝐛 . Then, DFS =  𝜎𝑖

2

1+𝜎𝑖
2𝑖   

– Æ DFS will not be underestimated if 𝐾-th largest singular value 𝜎𝐾  is negligibly small. 

• This gives a criterion for the optimal member size 𝐾 given the observation network 
(𝐇, 𝐑) and background error covariance (𝐁). 

• Inversely, given the member size 𝐾, we can choose localization scale so that DFS is 
not artificially bounded. For this, we can require that the observations within the 
localized area are few enough such that 𝜎𝑖 ≪ 1 for some 𝑖 < 𝐾. 
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6-4. Implication on order of obs. assimilation 
in serial EnKF 

(highly speculative) 
• Given that the total DFS is bounded by the ensemble size, it would make 

sense to assimilate the observation with the largest DFS first. 

• In fact, Dr. Jeff Whitaker showed at ISDA 2015 that, in serial EnSRF,  the 
following procedure improves the analysis: 

– assimilating observations from those with the smallest 𝜌 ≔ HAH𝑇

HBH𝑇 to those 

with the largest, 

– assigning large localization scale to observations whos 𝜌 is small. 

• It is easy to see 𝜌 = 
HAH𝑇

HBH𝑇 =
H I−KH BH𝑇

HBH𝑇 = 1 − HK =1-DFS, i.e., Dr. 

Whitaker’s successful method is equivalent to: 
– assimilating observations from largest DFS to those with smallest, 

– assigning a larger localization scale to observations with larger DFS 

• Æ DFS argument could provide a theoretical justification to his somewhat 
empirical but successful method. 
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7.$Take$home$messages�
•  EnKF$algorithms$inherently$underesGmate$posterior$spread$

if$you$(locally)$assimilate$much$more$obs$than$the$

ensemble$size.$

•  This$limitaGon$is$parGcularly$relevant$to$dense$observaGons$

(≈$Big*Data*Assimila8on*issue)$
–  Theory$well$developed$for$cases$#state$>>$#obs$∼$#ens$
–  Not$much$so$for$cases$#obs$>>$#ens$

•  DFS$argument$provides$insight$into$many$important$

aspects$of$Ensemble$DA$(inflaGon,$localizaGon,$thinning,$

superobing$…)$

•  So!please!start!thinking!about!your!problem!in!terms!of!
DFS!�

	��

Thank*you!*



QuesGons?$
A$quesGon$from$me$in$case$nobody$has$any$
quesGons$to$me.$
•  The$“Posterior$spread$underesGmaGon”$issue$
occurs$whenever$$rank(HBHT)$<$#obs.$

•  so$Reduced$Rank$Kalman$Filter$(RRKF)$must$
have$suffered$from$the$same$issue.$

Q:*Does$anybody$know$whether$this$issue$had$
ever$been$addressed$in$RRKF$context?$

		�



Backup slide 
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Hybrid 4DVar-LETKF DA developed in JMA 
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Analysis resolution 

 (outer / inner) 
TL959L100 (~20km, top:0.01hPa) / 
TL319L100 (~55km, top:0.01hPa) 

Assimilation 
window 

6 hours (analysis time +/- 3 
hours) 

Hybrid method 
Extended control variable 

method (Lorenc 2003) 

Weights on B βstat2 = 0.77, βens2 = 0.23  
LETKF resolution TL319L100 

Ensemble size 50 

Localization scale 
(4DVar) 

Horizontal: 800km 
Vertical: 0.8 scale heights 

Localization scale 
(LETKF) 

Horizontal: 400km, Vertical: 0.4 
(0.8 for Ps) scale heights 

Covariance 
inflation 

Adaptive inflation (Miyoshi 2011) 

Deterministic 
forecast 

Ensemble forecast 

Deterministic part Ensemble part 

QC 

4DVar 

Ensemble mean 

QC 

EnKF (LETKF) 

Observations 

Perturbations 

Next analysis 

Ensemble analysis 

Deterministic 
analysis 

Recentering 

Next analysis 

Operational global DA at JMA is 4DVar (not hybrid) 

ensensstatstat BBB 22 EE � 
Static (Climatological) 
background error covariance 

Ensemble-based 
background error 
covariance 

from Yoichiro Ota (2015, Adjoint Workshop) 



Proof of tr 𝐒loc ≡ tr(𝐇loc𝐊loc) ≤ 𝐾 − 1 for LETKF local analysis 

• In each local analysis of LETKF, DFS can be expressed as  
• tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐇𝐀𝐇𝑇𝐑−1   ∵ 𝐊 = 𝐀𝐇𝑇𝐑−1  
• LETKF estimates the analysis error covariance by： 

 𝐀 = 𝐗𝐛𝐀 𝐗𝐛𝑇,     𝐀 = 𝐾 − 1 𝐈 + 𝐘𝐛𝑇𝐑−𝟏𝐘𝐛
−1

= 𝟏
𝐾−1

𝐈 + 𝐙𝑇𝐙 −1,  with 𝐙 ≡ 𝟏
𝐾−1

𝐑−1
2𝐘𝐛 

• 𝐙𝑇𝐙 is a 𝐾 × 𝐾 positive semi-definite symmetric matrix. Its eigenvalue decomposition becomes： 
𝐙𝑇𝐙 = 𝐔𝚲𝐔−1, 𝐔𝐔−1 = 𝐈,  𝚲 = diag(λ1, λ2,⋯ , λ𝐾)  

• Since rank 𝐙 = 𝐾 − 1 , λ𝐾 = 0. From positive semi-definiteness of 𝐙𝑇𝐙,  λ𝑖> 0 (1 ≤ 𝑖 ≤ 𝐾 − 1). 
• Thus: 

𝐇𝐊 = 𝐇𝐀𝐇𝑇𝐑−1 = 𝐇𝐗𝐛𝐀 𝐗𝐛𝑇𝐇𝑇𝐑−1 = 𝐘𝐛𝐀 𝐘𝐛𝑇𝐑−1 

= 𝐾 − 1𝐑
1
2𝐙 𝐀 𝐾 − 1𝐑

1
2𝐙

𝑇
𝐑−1 = 𝐑

1
2𝐙 𝐈 + 𝐙𝑇𝐙 −1 𝐑

1
2𝐙

𝑇
𝐑−1 

• Because trace is invariant under cyclic reordering,  

tr 𝐒 ≡ tr 𝐇𝐊 = tr 𝐑
1
2𝐙 𝐈 + 𝐙𝑇𝐙 −𝟏 𝐑

1
2𝐙

𝑇
𝐑−1 = tr 𝐙 𝐈 + 𝐙𝑇𝐙 −𝟏𝐙𝑇𝐑

1
2𝐑−1𝐑

1
2  =

tr 𝐙 𝐈 + 𝐙𝑇𝐙 −1𝐙𝑇 = tr 𝐈 + 𝐙𝑇𝐙 −1𝐙𝐓𝐙 = tr 𝐈 + 𝐔𝚲𝐔−𝟏 −1𝐔𝚲𝐔−1 =

 𝜆𝑖
1+𝜆𝑖

= 𝜆1
1+𝜆1

+ ⋯+ 𝜆𝐾−1
1+𝜆𝐾−1

+ 0
1+0

≤ 𝐾 − 1𝐾
𝑖=1  


