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Posterior Mean 

Our goal in this talk is to discuss the estimation  

of the posterior mean  
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 |p x ywhere is the posterior density. 



The Posterior Mean is a function of y 
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The Posterior Mean is Curved 
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Hodyss (2011; MWR) proved that the curvature was  
determined by the posterior third moment: 

𝑑2𝑥 

𝑑𝑦2
=
T 𝑦

R2
 

T(y) = Posterior Third Moment 
R = Observation error variance 

Multivariate generalization can be found in Hodyss (2011) 



Polynomial Filtering 
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Hodyss (2011; MWR) shows how to expand  
the posterior mean as 
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The Kalman filter is “optimal” when: 
1. The innovation is small  
2. Prior is not too skewed 

Kalman Gain 



Polynomial Filtering 
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What’s remarkable about this is it looks just  
like a Kalman filter! 
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Gain: 

Innovation vector 
with new 

pseudo-obs! 



All-at-Once vs. Serial-Solve 

• Hodyss (2012; MWR) showed how to do the 
all-at-once solve. 

– Uses a minimization-based technique for the 
matrix inverse  and a post-multiply step 

• This talk will introduce the serial formulation. 

– There is a version of DART that now includes 
quadratic polynomial regression: 

• Ensemble Adjustment Quadratic Filter (EAQF) 

• Ensemble Kalman Quadratic Filter (EnQF) 

7 



Serial Quadratic Nonlinear Regression 
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Step 1: Assimilate regular ob  
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Step 2: Assimilate the “pseudo-ob” 
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Serial Cubic Nonlinear Regression 
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Step 1: Assimilate regular ob  

Step 2: Assimilate the “squared” ob 

   

 

 

 

Step 3: Assimilate the “cubed” ob 
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Kalman Filter 
Quadratic Filter 

Particle Filter 
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Prior Skewness 

Scalar Test Problem: Large Ensemble 

DA Experiment: 
Gaussian Ob Likelihood (R=1) 
Gamma Prior with (k,q) chosen such that 
 P = 1 but varying skewness 
 
Kalman and Quadratic formulas evaluated  
 with known analytic moments  
 (i.e. infinite ensemble) 
 
Particle filter uses 106 particles  
 
Experiment is repeated 106 times for  
      different truths and different obs 

 
10% reduction in MSE when prior 
 skewness is about 1.5 
 



Scalar Test Problem: Small Ensemble 

Kalman Filter 
Quadratic Filter 

Particle Filter 

Ensemble Size = 20 

Prior Skewness 
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Prior Skewness 

Ensemble Size = 100 

Kalman Filter 
Quadratic Filter 

Particle Filter 
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Is truncating the expansion a useful method for reducing sampling error? 



DA in Lorenz-63 

Obs of x and z 
Ensemble size: 1000 members Adaptive prior inflation (inf_flavor = 2)  
Ran for 1000 cycles   
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12 Number of Time Steps Between Obs Number of Time Steps Between Obs 

EAKF – Square Root 
EnKF – Perturbed Obs 
EAQF – Square Root 
EnQF – Perturbed Obs 



Prior Skewness in Lorenz-63 

X-variable, Y-variable, Z-variable 

Average absolute value of 
skewness over last 800 cycles. 
 
Solid:      R = 0.1 
Dashed: R = 0.5 
 
For R = 0.1 skewness is substantial 
after 6 time steps between 
observations 
 
For R = 0.5 skewness is substantial 
after 3 time steps between 
observations 
 
This appears to explain the 
posterior separation between 
KPO and QPO on previous slide. 
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DA in the Bgrid GCM 
Resolution: 60x30x5 (approximately 6 degrees) 
Obs: 10 soundings of U, V, T,Ps with R = 1       Adaptive prior inflation (inf_flavor = 2)  
Ensemble Size: 1000 members                         Ran DA for 365 cycles 

Solid      = Prior: EAKF-EAQF  
Solid      = Prior: EnKF-EnQF 
Dashed = Posterior: EAKF-EAQF 
Dashed = Posterior: EnKF-EnQF R
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Solid      = Prior: EAKF-EAQF  
Solid      = Prior: EnKF-EnQF 
Dashed = Posterior: EAKF-EAQF 
Dashed = Posterior: EnKF-EnQF 



Bgrid Prior Skewness: Obs 1 Day Apart 

Zonal Wind: Lowest Layer 

Red Circles = Ob locations 

Average absolute value of 
skewness over last 200 
cycles. 
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Bgrid Prior Skewness: Obs 10 Days Apart 

Red Circles = Ob locations 

Average absolute value of 
skewness over last 200 
cycles. 
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Zonal Wind: Lowest Layer 



Summary and Future Work 

• Polynomial filtering is easily implementable 
within an already constructed Ensemble-Based 
Kalman filter. 

• There’s little point to non-Gaussian methods if 
the skewness is small. 

– QC: Only create “pseudo-obs” for obs in regions of 
high skewness … ? 

• Future Work: Testing these results with nonlinear 
ob operators, higher resolution, and trying this 
out in the Navy’s aerosol model (NAAPS). 
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NAAPS Prior Skewness:  
Total Aerosol Optical Depth 
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Importance of the Third Moment 

If you believe that using a nonlinear observation operator in the  
numerator of the Kalman gain is useful, viz. 

      x x h x h x 

Then note the Taylor-series about           : 
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Use this in the covariance to obtain 
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The lowest-order impact is from the third moment! 


