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Representation Error
• Arises from the inability of the forecast model to resolve 

small-scale properties: 
– Unresolved processes
– Boundaries of resolved features

• Results in incompatibility between coarse model grids and 
observations, which observe a higher resolution state.

• Must be accounted for in the observation error covariance 
matrix:
– The best state that the model can represent is a “smoothed 

truth”
– Adding the penalty term to the background error covariance 

matrix would result in noise once the model is integrated
• Key, if not dominant, contributor to correlated observation 

errors



1. Split Observation-minus-Background statistics 
into observation and background error covariances
(e.g. Rutherford (1972) and Höllingsworth and 
Lonnberg (1986))

• Requires a dense observing network
• Dependent on the chosen correlation function
• Assumes observation errors are uncorrelated

2. Iterative procedures based on updating 
the Kalman gain (e.g Desroziers and 
Ivanov (2001), Desroziers et al. (2006))

• Easy to implement
• Dependent on prescribed error 

covariance matrices
• Iterative procedure may be required

Hodyss and Satterfield (2016) show that when the observation is higher resolution 
than the model state the Desroziers method and the H-L method have contributions 
from representation error as well as errors from resolved scales.

Estimating Covariance Matrices



Estimating Representation Error

3. Observation based methods to calculate representation error (e.g. Forget and Wunsch
(2007), Oke and Sakov (2007))

• Average observation data to model resolution and interpolate back to high 
resolution grid to compute differences 

• Ideally, we would like a continuous field, which observations cannot provide (using a 
spectral filter was discussed by Mitchell and Daley (1997) and Liu and Rabier
(2002))

• effective spectral resolution of a particular model may be smaller than the 
spectral resolution of the model due to diffusion or model error terms which may act 
to smooth the field

Oke and Sakov (2007)
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Error of Representation



Error Variance due to spectral 
truncation of ECMWF analyses

Error Variance due to Spectral Truncation.  Shown for temperature.

200 hPa Zonal average

Shown for January 2015



Comparison with ensemble variance

Time averaged ECMWF 
Ensemble Variance 

Temperature shown for January 2015

Error Variance due to Spectral 
Truncation of ECMWF 
deterministic forecast



Is Representation Error Dependent
on Ensemble Variance?  

• We apply both the H-L and Desroziers methods to 
two equally populated subsets of data based on 
ensemble variance.

• We use the NAVGEM ensemble and model 
background and restrict the observation type to 
temperature measurements from Vaisala RS92 
radiosondes to limit the influence of spatial variation 
of instrument error, correlation, errors from 
observation operator, and bias. 
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A regression based 
method would allow us 
to prescribe a static 
error, as is currently 
done in the observation 
covariance model, and 
also allow for 
representation error to 
vary as a function of 
ensemble variance. 

Accounting for Representation Error

Results for 
NAVGEM 
temperatures



Summary
• We then examined fluctuations in estimated observation error variances 

when the Desroziers and H-L methods are applied to subsets of 
innovations based on binning by ensemble variance.  

• Our comparison of the two methods demonstrates that deficiencies in 
the estimation methods cannot explain such fluctuations. 

• Regions of these fluctuations are in qualitative agreement with maps of 
variances due to spectral truncation. 

• Our study indicates that the ensemble variance could be used as a 
predictor of representation error.  The relative benefit of a flow 
dependent versus static form are the subject of current work.

• This procedure is general enough to be applied to other observation 
types, although potential spatial variations in instrument error as well as 
correlated errors need to be accounted for.
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Example Spectrums
If our coarse resolution 
model truncated the 
spectrum at wavenumber 
4 it would be entirely 
missing the “small-scale” 
processes creating the 
peak at wavenumber 8. 

If we truncate at wavenumber 
4, we will remove a 
substantial portion of the tail 
of the feature represented by 
the blue curve. This results in 
a misrepresentation of the 
feature and what we believe 
to be a key contributor to error 
of representation. Wavenumber



Error Variance due to spectral 
truncation of ECMWF analyses

Zonally averaged Error Variance due to Spectral Truncation 

Jan 2015 July 2013



Error Variance due to spectral 
truncation of ECMWF analyses

Error Variance due to Spectral Truncation at 200hPa

Jan 2015 July 2013



Comparison with ensemble variance

Time averaged 
ECMWF Ensemble 
Variance for 
Temperature at 
200hPa

Shown for January 2015

Error Variance due to 
Spectral Truncation of 
ECMWF deterministic 

forecast for 
Temperature at 

200hPa

Time averaged 
ECMWF 200hPa 
Temperature
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Under-dispersive Over-dispersive

What is the impact of ensemble dispersion?

250hPa
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Results for NAVGEM temperatures

Toy Model Analysis: Desroziers Estimate Prescribed 



The Desrozier diagnostic (blue) and the prescribed observation error variances 
(red) for a) a perfectly dispersive ensemble (a=1) b) an under dispersive ensemble 
a=0.2 and c) an over dispersive ensemble (a=2).  (d-f) repeat (a-e) with reduced day 
to day variation of forecast error variance. (g-i) repeat (a-c) with reduced ensemble 
size.  
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