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Motivation
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l The	resolution	of	radar	observation	data	can	be	
usually	higher	than	the	model	resolution;	
in	particular,	Phased-Array	Weather	Radar	(PAWR).

lWe	explore	radar	data	assimilation	
at	1-km	– 100-m	model	resolution
with	a	30-s	rapid-update	cycle using	the	K	computer!	



100x
more data!
10x more data 
in a 1/10 period

3-dim measurement using 
a parabolic antenna  (150 m, 

15 EL angles in 5 min)
3-dim measurement using a phased array antenna 

(100 m, 100 EL angles in 30 sec)

Phased Array Weather Radar (PAWR)
Courtesy of 
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SCALE-LETKF   (Lien	et	al.	2016)
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l Model:

l Scalable	Computing	 for	Advanced	 Library	and	Environment	
(Nishizawa	 et	al.	2015;	Sato	et	al.	2015)

l An	open-source	 basic	library	for	weather	 and	climate	model.

l Developed	 also	at	RIKEN	AICS.

l Data	assimilation:

Local	Ensemble	 Transform	Kalman Filter	(LETKF;	Hunt	et	al.	2007)

- Regional	model



Experimental settings
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Resolution Size Observation Cycle length

D1 15	km 5760	x	4320	km PREPBUFR 6	h

D2 5	km 1280	x	1280	km PREPBUFR 6	h

D3 1	km 180	x	180	km PAWR 5	m

D4

1	km
500	m
250	m
100	m

120	x	120	km PAWR 30	s

D1 (15 km)

D2 (5 km)
D3 (1 km)

D4 
(1km~100m)

Ensemble	 size: 100
State	variables:	U,	V,	W, P,	T,	Q,	Qc,	Qr,	Qs,	Qi,	Qg

00:00Z	July	12

02:00Z	July	13
06:00Z	July	13
(15:00L)

00:00Z	July	1 D1

D2

D3
D4

30-min	forecasts	
every	10	min



Experimental settings
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After a very long process of tuning……………
l Assimilate	 both	reflectivity	(Ref)	and	radial	velocity	(Vr) data.
l Radar	data	QC	(Ruiz	et	al.	2015):		remove	ground	clutter	and	attenuated	 data.
l Superob to	model	resolution	 (use	only	the	data	below	11	km).
l Define	 	Ref_rain:	 			raw	Ref >=	10	dBZ

Ref_clear:		raw	Ref	<	10	dBZ
l Set	all	Ref_clear (both	observation	 and	background)	to	5	dBZ.	(Similar	to	

Aksoy et	al.	2009 but	leave	a	5-dBZ	gap	between	minimum	Ref_rain and	Ref_clear)
l Observation	errors:				Ref:			5	dBZ

Vr:					3	m/s
l Reject	data	when	[y	– H(x)]	>	10	x	obs error
l Reject	data	when	there	are	too	few	“raining”	(Ref_rain)	background	members:

(similar	to	Lien	et	al.	2013,	2016 for	precipitation	 assimilation)
Ref_rain obs: require	>=	1		(out	of	100)	background	members	having	Ref_rain
Ref_clear obs: require	>=	20	(out	of	100)	background	members	having	Ref_rain

l Limit	number	of	observations	 used	per	grid	(Hamrud et	al.	2015):		Max	=	100
l Relaxation	 to	prior	spread	(Whitaker	and	Hamill	2012):		α =	0.95
l Covariance	 localization:

Horizontal	 (Ref_rain and	Vr):		4	km
Horizontal	 (Ref_clear):													2	km
Vertical	 					(all):	 																									2	km

Ref_clear Ref_rain
5									10	dBZ



OBS	After	QC (Ruiz	et	al.	2015) 250	M	(D4)

10-min analyses and 30-min forecasts Obs superobed to	
the	model	resolution
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15:00L	– 15:10L	:	Analysis
15:10L	– 15:40L	:	Forecast

3-km	height



Initial	time:	15:10L 15:20L

16:00L15:40L 15:50L

30-min forecasts at 250-m model resolution
15:30L

10	dBZ 40	dBZObservation:



Resolution dependence
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l Compare	 the	30-min	forecast	skills	at	different	 resolutions:

Experiments Model	
resolution

Observation
resolution Cycle length #	forecast	cases

(every	10	min)

D3_1	KM 1	km 1	km 5 min 6

1	KM		(D4) 1	km 1	km 30	sec 6

500	M		(D4) 500	m 500	m 30	sec 6

250	M		(D4) 250	m 250	m 30	sec 6

100	M		(D4) 100	m 100	m 30	sec 1



OBS

1	KM		(D4) 500	M		(D4)

250	M	(D4) 100	M	(D4)

10-min analyses and 30-min forecasts 
at different model resolutions
1	KM		(D3;	5-min	cycle)

22	node-hours	/	cycle 79	node-hours	/	cycle

531	node-hours	/	cycle 4444	node-hours	/	cycle

Obs superobed to	
the	model	resolution



Threat	scores compared	to	the	PAWR	reflectivity	
observation	and	calculated	in	3	dimensions	(entire	
domain,	2.5–4	km	height)	at	1-km	grids;	higher	
resolution	data	averaged	to	the	same	1-km	grid(0610Z;		1	forecast)

Threat	scores

[10	dBZ] [30	dBZ]

1	KM
500	M
250	M
100	M

Resolution dependence
(obs limit = 100)

D3_1	KM	(5-min	update	cycle)
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10-min	forecast:	1	KM 100	MOBS 25-min	forecast:	1	KM 100	MOBS

(min) (min)

Experiments	 are	performed	with	
the	same	localization	 settings
while	also	using	the	same	
observation	 number	limit	



Threat	scores

Resolution dependence
(obs limit = 100)

[10	dBZ] [30	dBZ]
(0610Z	- 0700Z;		6	forecasts)

1	KM
500	M
250	M

D3_1	KM	(5-min	update	cycle)
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(min) (min)



Observation number limit  (Hamrud et	al.	2015)
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l Limit	the	number	of	observations	 assimilated	 per	grid	point for	each	
combination	 of	different	 report	types	(e.g.,	radiosonde)	 and	variables	
(e.g.,	U-wind).
l Observations	 spatially	 closest	to	the	analyzed	 grid	point	are	selected.

l In	their	system	 (i.e.,	ECMWF	global	model):
l Maximum	observation	 number	per	grid	(NOBS)	=	30
l Advantages:

l Save	the	computational	 time.
l Significantly	increase	 the	forecast	 scores	 in	the	Northern	Hemisphere	

(3-5%	anomaly	correlation	metric).

l Modifications	 in	our	study:
l Observations	 with	smallest	 “localization-modified	 observation	errors”	

are	selected.
l Optimal	NOBS	=	100 by	sensitivity	 experiments	 at	250-m	resolution.



NOBS	=	30			:		Second	best	results
NOBS	=	100	:		Best	results
NOBS	=	500
NOBS	=	∞

Threat	scores

Impact of obs number limit 
(250 m)

[10	dBZ] [30	dBZ]
(0610Z	- 0620Z;		2	forecasts)
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(min) (min)



Impact of obs number limit - #OBS
(250 m; 1st cycle)
NOBS	=	30 NOBS	=	100

NOBS	=	∞

NOBS	=	500

Computational	time:
T	=	276	s T = 280 s T = 279 s

T	=	728	s
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More	than	100,000	observations	 !

Covariance	 localization:
Horizontal	 (Ref_rain and	Vr):		4	km	(cut-off	radius	14.6	km)
Horizontal	 (Ref_clear):													2	km	(cut-off	radius	7.3	km)
Vertical	 					(all):	 																									2	km	(cut-off	radius	7.3	km)

Localization	 cut-off	area	for	Ref_rain and	Vr



Impact of obs number limit - Increment
Ref (dBZ) (250 m; 1st cycle)
NOBS	=	30 NOBS	=	100

NOBS	=	∞

NOBS	=	500
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Very	similar	 !



Impact of obs number limit - #OBS
(250 m; 1st cycle)
NOBS	=	30 NOBS	=	100

4	km	thinningNOBS	=	∞ 1	km	thinning

NOBS	=	500



Impact of obs number limit - Increment
Ref (dBZ) (250 m; 1st cycle)
NOBS	=	30 NOBS	=	100

4	km	thinningNOBS	=	∞ 1	km	thinning

NOBS	=	500

Smaller	increment



NOBS	=	30
NOBS	=	100
NOBS	=	500
NOBS	=	∞

Threat	scores

Impact of obs number limit 
(250 m)

1	km	thinning	(NOBS	=	∞ )
4	km	thinning	(NOBS	=	∞ )

[10	dBZ] [30	dBZ]
(0610Z	- 0620Z;		2	forecasts)
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(min) (min)



Impact of covariance inflation methods
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l Relaxation	 to	prior	perturbation	 (RTPP;	Zhang	et	al.	2004)			vs.	
Relaxation	 to	prior	spread	 (RTPS;	Whitaker	and	Hamill	2012)

l In	the	LETKF:
RTPP:

RTPS:
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Relaxation	to	prior	spread	(RTPS)
Relaxation	to	prior	perturbation	(RTPP)

Threat	scores

Impact of relaxation method 
(1 km; obs limit = 100; alpha = 0.95)

[10	dBZ] [30	dBZ]
(0610Z	- 0700Z;		6	forecasts)
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(min) (min)



Impact of relaxation method 
(1 km; obs limit = 100; alpha = 0.95)
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RTPS RTPP
Too	noisy	and	too	dry

3-km	height	relative	humidity:
Analysis	at	15:40L



Impact of relaxation method 
(1 km; obs limit = 100; alpha = 0.95)
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(h
Pa

/	s
)

Relaxation	to	prior	spread	(RTPS)

Relaxation	to	prior	perturbation	(RTPP)

Imbalancemeasured	by	domain-averaged		|dPs/dt|
30-min	forecast	started	from	15:40L

(min)



Summary
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l The	sub-kilometer	 radar	data	assimilation	using	the	LETKF	can	work!
l Higher	 resolution	assimilation	 up	to	100	m	leads	to	a	better	fit	to	

observation,	 although	the	benefit	does	not	last	beyond	10	minutes	
in	our	current	experiments.

l The	30-second	update	cycle	is	advantageous	 over	the	5-minutes	
update	cycle.

l Optimal	settings	are	suggested:
l Observation	 number	 limit	 	(Hamrud et	al.	2015)

l Relaxation	 to	prior	spread	 (RTPS)		(Whitaker	and	Hamill	2012)

l Potential	drawbacks:
l The	model	may	not	be	well	 tuned	in	the	sub-kilometer	 resolution.
l No	consideration	 of	model	 errors:

l e.g.,	 “Additive	noise”	method		(Dowell	and	Wicker	2009)


