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Models

“The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and
precisely that it is expected to work."– John von Neumann

a spot-on description of our justification of the
mathematical model of data assimilation;
the “verbal interpretations” are crucial, because they guide
our intuition, but they also tend to make us forget that we
are working with models,

–IS
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The Mathematical Model of Data Assimilation

For simplicity, assume that the mathematical model of data
assimilation is the model of sequential data assimilation:

xa = xb+Kδy, δy = yo−H
(

xb
)
, K = PbHT

(
HPbHT + R

)−1

A particular scheme must be robust to errors in

unexpected (gross) errors in the background and the
observations
the observation and background error statistics
the model that defines the observation function

We can achieve this by replacing the statistics (e.g.,
background error covariance matrix and observation error
covariance matrix) by robust statistics
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Robust Statistics

Robust statistics must satisfy the following criteria (Huber and
Ronchetti 2009):

efficiency–for clean input data (data that satisfy the
assumptions of the original statistical model), the results
are almost as good as for the original statistics (perfect
model experiments)
stability–small errors in the assumptions lead to small
errors in the (state) estimates
breakdown–gross errors in the input data do not lead to
catastrophic breakdown
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Example 1: Variance Inflation (from Szunyogh, 2014:
Applicable Atmospheric Dynamics)

Assimilation of simulated observations of the Henon
Mapping by an Extended Kalman Filter

The sources of the violation of the assumptions of ETKF
are the limitations of the TLM in describing the error
dynamics
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Example 1 (Continued)

Variance inflation reduces the magnitude and the frequency of
error bursts
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Example 2: Uncorrected Background Bia

From the Appendix of Holt et al., 2015, MWR, 143, 3956–3980

Assume that the model has a single state variable x and
the scalar background xb is biased by b, and we have a
direct observation yo of x (H

(
xb) = xb, H = HT = 1)

The analysis still have minimum variance, but not minimum
rms error
The Kalman gain that minimizes the rms error is

K̂ =
(

Pb + b2
)(

Pb + b2 + R
)−1

rather than K =
(
Pb) (Pb + R

)−1

The same effect can be achieved by using K and replacing
R by

R̂ = R(1 + b2/Pb)−1

Szunyogh Coping with Model Errors



Example 3: Continued

Assume that
the data assimilation system uses (Pb)1/2 = 4 hPa for the
SLP in a TC
the data assimilation system uses (R)1/2 = 5 hPa for a
TCVitals SLP observation
xb is biased with b = 40 hPa

Using R̂ rather than R
increases the standard deviation of the analysis error from
3.12 hPa to 4.92 hPa, but reduces the rms error of the
analysis from 24.59 hPa to 4.96 hPa
A huge reduction of the analysis bias at the price of a small
increase of the analysis error variance
Can be used, if there is no reason to believe that the
analysis with a smaller bias would upset the model
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Example 4: Gross Observation Errors and/or Good
Observations that May Shock the Model

Roh et al., 2013: Observation Quality Control with a
Robust Ensemble Kalman Filter, MWR, 141, 4414–4428
The analysis update equation can be Huberized as

xa = xb + KG (δy) ,

where G (δy) is the Huber function,
For instance, a potential choice for the Huber function is

G (δy) =


δy if|δy| < c
c ifδy ≥ c
−c ifδy ≥ −c

where c is a prescribed clipping innovation
Main appeal: It can easily implemented in an EnKF for QC
(no need for variational minimization)
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A Historical Note

The Huber norm QC went into operations at ECMWF with
cycle 35r3 on September 8 2009. Long before it was
written up for the 2015 paper.
An earliest citation is Tavolato and Isaksen, 2009: Huber
norm quality control in the IFS. ECMWF Newsletter, 122,
27–31.
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Illustration of Examples 3 and 4 for TC Observations

Based on Holt et al., 2015, MWR, 143, 3956–3980
Models: NCEP GFS at resolution T62L28, RSM at
resolution 48 km and 28 levels (a glorified toy system)
Data assimilation: LETKF
Regular observations: all operationally assimilated
non-radiance observations
TC observations: TCVitals SLP (R1/2 = 0.5 hPa),
drospsondes from DOTSTAR, QuikSCAT (both with
Huberized innovation)
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Illustration: Sinlaku Analyses

panel). The RSMControl experiment with conventional

QC and no additional TC observations performs poorly

and even degrades the GFS LETKF analysis at times.

The GFS LETKF experiment is the set of global ana-

lyses coupled with the RSM forecast model. While the

LETKF control experiments (GFS LETKF and RSM

Control) indicate a similar trend as the NCEP opera-

tional analysis (NCEP Oper ANL), none of them, in-

cluding the NCEP analysis, captures the best track

intensity or trend in intensity. The average track ana-

lyses for the LETKF global and RSM Control experi-

ments are the least accurate among those for which the

results are shown.

The Kept1Slide TCVonly (TCVitals are the only TC

observations and are assimilated in addition to con-

ventional observations) experiment improves the sim-

ulated TC intensity early on, and then again at the end of

the cycling period, but does poorly during the most

FIG. 6. (top) Analyzed minimum SLP and (bottom) average position error over all analysis

cycles for Typhoon Sinlaku. Stars in the top panel indicate the times at which QuikSCAT

observations were available near the TC.

OCTOBER 2015 HOLT ET AL . 3969
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Illustration: Sinlaku Forecasts

For the weak storms, the Combined 0.5 configuration

improves the intensity and position analyses of the original

QC control experiment at the 95% confidence level. The

improvements in the Combined 0.5 configuration over the

global analyses indicate that our global analysis has an 8%

chance of producing the same distribution of errors for

position analysis, while there is a 12% chance of producing

the same intensity errors in the NCEP operational anal-

ysis. Table 3 summarizes these findings.

The statistically significant systematic improvement

of analyzed intensity and position for all storm strengths

over the experiment where the original QC method is

used suggests that the Huberization of the innovation is

an efficient method for observation QC.

Five-day forecasts were started every 12h from the

global and regional LETKF analyses. The results from

these experiments are also binned according to the best

track intensity estimates at verification time. Figures 12

FIG. 8. Difference between daily forecast intensity error averages of the Control and

Combined 0.5 experiments. Each bar indicates the averaged value over the indicated forecast

length started at one of the 35 analysis times for Sinlaku. All values show improvement due to

the assimilation of the TC observations. Gray shading indicates that the improvement is sta-

tistically significant at the 95% confidence level.
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Concluding Remarks

People have always been working hard on making their
data assimilation systems robust
But, they do not like to talk about the adjustments they
make to the error statistics, because they feel that these
are hard to defend (reviewers make sure that they feel that
way!)
Keep in mind that the need for such adjustments is fully
expected, as the mathematical model of data assimilation
is not more than an extremely useful model
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