
EnKF radiance	assimilation

Jeff	Whitaker1 and	Lili	Lei2
1NOAA/ESRL/PSD

2CIRES	and	Nanjing	University



Motivation	(1)

• Hypothesis:	4DEnVar	(non-hybrid)	and	EnKF
should	perform	similarly	if	all	‘extra’	
constraints	turned	off	in	Var solver.

• Experiment:		T254	single	resolution	4DEnVar	
(no	static	B,	balance	constraint)	vs ‘pure’	EnKF
(80	members,	operational	localization	
settings).



Motivation	(2)
4DEnVar	vs EnKF,	no	radiances

RMS	innovations	for	background

Virtually	no	difference,	EnKF (red)	perhaps	slightly	better	for	humidity



Motivation	(2)
4DEnVar	vs EnKF,	including	radiances

RMS	innovations	for	background

4DEnVar	(blue)	slightly	better,	esp in	SH.		Why?
Hypothesis:	 	Difference	in	vertical	 localization	



Observation	and	Model-Space	Localization

Model	space:		
• state-space	 covariances are	
tapered.	
• Involves	distances	 between	
state	variables	only.		
•	 H applied	 after.		
• EnVar algorithms	use	this	
form.

Observation	space:		
• Computed	 after	H applied.	 	
• Involves	distances	 between	
state	and	observation	space	
quantities.	 	
•	Much	simpler	 to	implement	 in	
EnKF systems.



Motivation	(3)
4DEnVar	vs EnKF,	radiances	only

RMS	innovations	for	background

4DEnVar	(blue)	now	significantly	 better	(although	using	deeper	 localization	
(green)	for	EnKF helps	quite	a	bit)	



Experiments	with	a	simple	model

• 1-d	Kuramoto-Sivashinsky equation	
(https://www.encyclopediaofmath.org/index.php/Kuramoto-
Sivashinsky_equation),	one	of	the	simplest	PDEs	that	exhibits	
spatio-temporal	chaos.

• u_t +	u*u_x +	u_xx +	d*u_xxxx =	0,	periodic	BCs	on	[0,2*pi*L].	
– Energy	enters	the	system	at	long	wavelengths	 via	u_xx (an	unstable	

diffusion	 term)
– cascades	to	short	wavelengths	due	to	the	nonlinearity	 u*u_x
– dissipates	 via	d*u_xxxx
– Solved	with	spectral	method,	using	N	Fourier	collocation	points.	

• Python	code	available	at	https://github.com/jswhit/pyks.git



Nature	run:	L=16,	N=128,	dt=0.5,	d=1	(semi-
implicit	RK3	scheme)



Data	assimilation	experiments

• 10	members,	assimilation	every	4	time	steps	(2	
time	units).

• Forward	observation	operator	(H)	includes	an	
averaging	kernel,	either	Gaussian	or	boxcar	
(running	average).		R=0.1

• Serial	EnSRF with	either	observation	space	or	
model	space localization.		Observation	‘location’	
assumed	to	be	center	of	averaging	kernel.

• Multiplicative	inflation	using	Hodyss et	al	2016	
(dx.doi.org/10.1175/MWR-D-15-0329.1)	algorithm.



‘Modulated	ensemble’	approach	 to	model-space	 localization	in	the	EnKF

Model	space	localization	 is	Ploc =	ρ ○ Psample (○ denotes	element-wise	
product)

Let Psample = XXT,	ρ =	LLT	,	then	Ploc =	LLT	○ XXT	=	ZZT,	where	Z =	L Δ X	and	Δ
denotes ‘modulation product’	(Bishop	and	Hodyss,	 20081)

If X has N columns (ens.	members)	 and	L has M columns (eigenvectors),	 then
Z	=	[[X1 ○ L1, X2 ○ L1,…, XN ○ L1],[X1 ○ L2, X2 ○ L2,…, XN ○ L2],…, [X1 ○ LM, X2 ○ LM,…, XN ○ LM]]

1doi: 10.1111/j.1600-0870.2008.00372.x



RMS	analysis	error	as	a	function	of	localization	scale

•	model	space	localization	works	better	for	Boxcar	kernel.
•	ob space	localization	works	better	(for	short	localization	scales)	for	Gaussian	kernel.
•	Why?



Mean	correlation	between	ob priors	and	state	
priors	(using	localization=50)

•	correlation	between	state	and	ob space	is	maximum	at	edge	of	Boxcar	kernel	(not	center).



Why	is	ob space	localization	better	in	some	
circumstances?

•	Localization	applied	 to	Pb
removes	some	of	negative	side	
lobes.
•	H operator	applied	 to	localized	
covariance	then	produces	too	
large	a	value	for K..
•	See	Lei	and	Whitaker	2015:	DOI:	
dx.doi.org/10.1175/MWR-D-14-
00413.1
•	Symptom	(seen	with	some	
satellite	 obs):		single-ob
experiment	with/without	
localization,	 increment	 is	larger	
with localization	than	without.



Conclusions	(simple	model	expts)

• Model	space	localization	performs	better	when	
correlation	between	ob prior	and	model	priors	is	not	
maximum	at	center	of	averaging	kernel	(nominal	’ob
location’).		Advantage	is	even	larger	than	shown	by	
Campell et	al	2009	(dx.doi.org/10.1175/2009MWR3017.1).
– Ob	space	localization	with	‘empirical	localization	functions’	
(ELFs)	can	work	in	this	circumstance	…



Example	of	Empirical	Localization	Function	(ELF)	with	Boxcar	Kernel	
H (Lorenz	40	variable	model)	from	Anderson	and	Lei	2013:	

http://dx.doi.org/10.1175/MWR-D-12-00330.1



Conclusions	(simple	model	expts)

• Model	space	localization	performs	better	when	
correlation	between	ob prior	and	model	priors	is	
not	maximum	at	center	of	averaging	kernel	
(nominal	’ob location’).	

• If	correlation	is	maximum	at	center	of	averaging	
kernel,	ob space	localization	can	perform	better	if	
there	are	negative	side	lobes	in	correlation	and	
localization	scale	is	short	(Lei	and	Whitaker	2015:	
DOI:	dx.doi.org/10.1175/MWR-D-14-00413.1).



EnKF radiance	assimilation	with	
model-space	localization

• As	before,	with	GFS	T254	80	member	
ensemble,	but	using	model	space	localization

• ‘Modulated	ensemble’	approach	used	to	
implement	model-space	localization	 in	the	
vertical	only.



‘Modulated	ensemble’	approach	to	model-space	vertical	localization
• Assume	 localization	 is	separable.	 Perform	horizontal	 localization	 in	ob

space,	vertical	 in	model	 space.
• Truncate	the	vertical	 localization	matrix,	retaining	the	M eigenvectors	

that	explain	90-95%	of	the	variance	 (M is	O(10)	for	the	current	
operational	 configuration,	N=80).		The	‘modulated	 ensemble’	 then	
contains MN members.	 	
- Horizontal	 localization	still	computed	 in	observation	 space.
- The	EnKF algorithm	 is	unchanged,	except	that	vertical	localization	is	turned	

off,	and	‘modulated’	ensemble	 (in	model	and	observation	 space)	 is	ingested	
instead	of	‘raw’	ensemble.

- Only	the	original	N	ensemble	members	 are	updated	in	the	DA,	using	
covariances derived	 from	the	full	MN member	modulated	ensemble.

- Not	straightforward	 to	implement	in	LETKF,	since	analysis	weights	apply	to	
full	MN	member	 ensemble	 (not	original	N	member	ensemble).	



Results	(radiance-only	assimilation)

• Using	model	space	localization	in	the	EnKF improves	the	use	of	radiance	
data.

• Performance	similar	to	4DEnVar.



How	many	members	are	needed	to	turn	off	
vertical	localization?

• Since	12	eigenvectors	of	vertical	localization	
matrix	explain	99%	of	variance,	this	suggests	
that	80*12=960	members	should	be	
sufficient.

• We	have	run	a	960	member	LETKF	ensemble	
without	vertical	localization	(very	efficient	in	
LETKF,	since	analysis	weights	can	be	computed	
for	entire	column	at	once).



4DEnVar	(80	members)	vs	LETKF	(960	members):	
radiances	only

• Significant	improvement	from	increase	ensemble	size/elimination	of	
vertical	localization.

• Performance	superior	to	4DEnVar	with	80	members.



Conclusions
• Care	must	be	taken	when	assimilating	radiance	
observations	in	the	EnKF with	observation-space	
localization.

• O(1000)	members	should	be	enough	to	obviate	the	
need	for	vertical	localization.

• Model	space	localization	improves	the	assimilation	of	
radiance	observations.		Can	be	implemented	in	EnKF
using	‘modulated	ensembles’,	but	with	a	significant	
increase	in	cost.
– Alternately,	empirically	derived	localization	functions	(ELFs,	
Lei	et	al	2016:	dx.doi.org/10.1002/2016MS000627) for	
each	instrument/channel.



Example	from	Lei	et	al	2016:		AMSU-A	Channel	9


