Applying Ensemble-Based Sensitivity Analysis to WRF Convection Forecasts in the Northern Great Plains

Jeremy D. Berman¹, Ryan D. Torn¹, G. Romine², and M. Weisman²

¹University at Albany, SUNY ²National Center for Atmospheric Research (NCAR)

Friday 27 May 2016 7th EnKF Data Assimilation Workshop State College, PA

CAR

This work is supported by NSF grant #1239787

Motivation

• Numerical Weather Prediction model forecasts of severe convection are often characterized by varied degrees of predictability depending on the particular case.

Model Forecast: The Good

Model Forecast: The Bad

Model Forecast: The Bad

Motivation

- Numerical Weather Prediction model forecasts of severe convection are often characterized by varied degrees of predictability depending on the particular case.
- One hypothesis for larger errors in some cases is that the model's initial conditions are characterized by errors in upstream sub-synoptic features before convective initiation takes place.
 - (e.g., Weisman et al., 2008; Clark et al., 2010ab)

MPEX: Observations

- 15 May 15 June 2013
- Two missions a day:
 - early morning mission (~3:00 am 10:00 am) primarily over the intermountain region
 - afternoon and early evening mission to the lee of the mountains
- Ensemble sensitivity analysis for dropsonde locations
- WRF ensemble forecasts produced twice daily (00 and 12 UTC)

NCAR GV and mini-dropsonde

WRF Model and Domain

Gaspari-Cohn

635 km

8 km

WRF V3.3.1 •

Physical parameterization

Long- and shortwave radiation

Planetary boundary layer

Cumulus parameterization

Localization function

Parameter

Horizontal localization half-width

Vertical localization half-width

Land surface model

Microphysics

- CONUS 15 [3] km grid spacing, 40 ٠ vertical levels
- 50 member EAKF (Anderson 2001) • with DART software (Anderson 2009) used to initialize forecasts.
- EnKF data assimilation system using ٠ 6-hr cycling, adaptive inflation & localization, sampling error correction

Thompson

Noah

Tiedtke

Tables adapted from Schwartz et al. (2015)

WRF Model and Domain

- WRF V3.3.1
- CONUS 15 [3] km grid spacing, 40 vertical levels
- 50 member EAKF (Anderson 2001) with DART software (Anderson 2009) used to initialize forecasts.
- EnKF data assimilation system using 6-hr cycling, adaptive inflation & localization, sampling error correction

50-member WRF-DART Forecasts for MPEX Case Study of Severe Convection: 11-12 June 2013

rarameter

Localization function Horizontal localization half-width Vertical localization half-width Gaspari–Cohn 635 km 8 km

Tables adapted from Schwartz et al. (2015)

Case Overview: Mid-level Short-wave Trough

WRF-DART analyses of 400 hPa vorticity (shading, 10⁻⁵ s⁻¹), heights (contours, dm), and winds (vectors, m s⁻¹).

Case Overview: Lower-level thermodynamic boundaries

WRF-DART analyses of 0-1 km equivalent potential temperature (shading, K), 850 hPa heights (contours, dm), and 0-1 km winds (vectors, m s⁻¹).

Case Overview: Lower-level thermodynamic boundaries

WRF-DART analyses of 0-1 km equivalent potential temperature (shading, K), 850 hPa heights (contours, dm), and 0-1 km winds (vectors, m s⁻¹).

Model Reflectivity and Observation: 2300 UTC 11 June 2013

Model Reflectivity and Observation: 2300 UTC 11 June 2013

Model Reflectivity and Observation: 2300 UTC 11 June 2013

Pre-convective Profile Differences: 1800 UTC 11 June

Profile standardized difference (red line) and ensemble-mean (black line) profile. Statistical significance at the 95% confidence level (gray shading).

Pre-convective Profile Differences: 1800 UTC 11 June

Profile standardized difference (red line) and ensemble-mean (black line) profile. Statistical significance at the 95% confidence level (gray shading).

Ensemble-Sensitivity Analysis

• Linear regression between ensemble model grid point and forecast metric

$$\frac{\partial J}{\partial x} = \frac{\operatorname{cov}(\mathbf{J}, \mathbf{x})}{\operatorname{var}(\mathbf{x})}$$

Ancell and Hakim (2007); Hakim and Torn (2008)

Ensemble-Sensitivity Analysis

• Linear regression between ensemble model grid point and forecast metric

 $\frac{\partial J}{\partial x} = \frac{\operatorname{cov}(\mathbf{J}, \mathbf{x})}{\operatorname{var}(\mathbf{x})}$

Ancell and Hakim (2007); Hakim and Torn (2008)

• Sensitivity of J (vertical KE) to earlier forecast time state variable x (near-surface $\boldsymbol{\theta}_{e}$)

Sensitivity Analysis: Near-surface θ_e

Sensitivity Analysis: Near-surface θ_e

Increased convection over Nebraska associated with dryline shifted to the west

Dropsonde Impact on Dryline: 1200 UTC 11 June

Relative improvement in (a) temperature and (b) specific humidity mean-absolute error between the weak and strong members with respect to the sensitive profiles (black) and all dropsondes (dashed) initialized 24-h prior. Levels with a dot denote where the difference is statistically significant at the 95% confidence level.

Summary and Conclusions

- Forecast variability in the timing and location of convection over Nebraska.
- Convection forecasts sensitive to position of upstream dryline, which modulates the pre-convective moisture.
- Sensitivity analysis can suggest regions for targeting to improve convective forecasts.
 - Dropsondes near sensitive area show a more accurate forecast of the pre-convective thermodynamic environment.
 - Future work to assimilate these dropsondes.

Berman, J. D., R. D. Torn, G. S. Romine, M. L. Weisman: *MWR*, soon to be submitted

Extra Slides

Physical parameterization	WRF Model option	References
Microphysics	Thompson	Thompson et al. (2008)
Long- and shortwave radiation	Rapid Radiative Transfer Model for Global Climate Models (RRTMG) with ozone and aerosol climatologies	Mlawer et al. (1997); Iacono et al. (2008); Tegen et al. (1997)
Planetary boundary layer	Mellor-Yamada-Janjić (MYJ)	Mellor and Yamada (1982); Janjić (1994, 2002)
Land surface model Cumulus parameterization	Noah Tiedtke	Chen and Dudhia (2001) Tiedtke (1989); Zhang et al. (2011)

 TABLE 1. Physical parameterizations used in all WRF Model forecasts. Cumulus parameterization was not used on the convection-allowing 3-km grid.

TABLE 2. Localization settings and analysis variables in the EAKF system, as well as the observations that were assimilated.

Parameter	Value	
ocalization function	Gaspari–Cohn	
orizontal localization half-width	635 km	
ertical localization half-width	8 km	
nalysis variables	Zonal and meridional wind components; perturbation potential temperature and geopotential height; water vapor, cloud water, rainwater, ice, graupel, and snow mixing ratios; rainwater and ice number concentrations; diabatic heating	
ssimilated observations	Radiosonde, aircraft, METAR, surface synoptic observation (SYNOP), buoy, ship, atmospheric motion vectors, global positioning system refractivity	

Sensitivity Analysis: Cross-section

Sensitivity Analysis: 330-340 K PV

