
Applying Ensemble-Based Sensitivity 
Analysis to WRF Convection 

Forecasts in the Northern Great Plains 

Jeremy D. Berman1, Ryan D. Torn1, G. Romine2, and 
M. Weisman2  

1University at Albany, SUNY 
2National Center for Atmospheric Research (NCAR) 

 
Friday 27 May 2016 

7th EnKF Data Assimilation Workshop 
State College, PA 

This work is supported by NSF grant #1239787 



Motivation 

•  Numerical Weather Prediction model forecasts of  
severe convection are often characterized by varied 
degrees of  predictability depending on the 
particular case. 



Model Forecast: The Good 

Weisman	  et	  al.	  (2015)	  

Composite	  radar	  reflec9vity	  valid	  00	  UTC	  on	  20	  May	  2013	  	  

Observed	  



Model Forecast: The Bad 

a b c

d e f	  

Observed	  

Composite	  radar	  reflec9vity	  valid	  00	  UTC	  on	  12	  June	  2013	  	  



Model Forecast: The Bad 

a b c

d e f	  

Observed	  

Composite	  radar	  reflec9vity	  valid	  00	  UTC	  on	  12	  June	  2013	  	  



Motivation 

•  Numerical Weather Prediction model forecasts of  
severe convection are often characterized by varied 
degrees of  predictability depending on the 
particular case.   

•  One hypothesis for larger errors in some cases is 
that the model’s initial conditions are characterized 
by errors in upstream sub-synoptic features before 
convective initiation takes place.  
–  (e.g., Weisman et al., 2008; Clark et al., 2010ab) 



MPEX: 
Observations 

•  15 May – 15 June 2013 
•  Two missions a day:  

–  early morning mission (~3:00 am - 10:00 am) 
primarily over the intermountain region  

–  afternoon and early evening mission to the lee of  
the mountains 

•  Ensemble sensitivity analysis 
      for dropsonde locations 

•  WRF ensemble forecasts produced 
      twice daily (00 and 12 UTC) 

 
 
 
Figure SB1. The National Center for Atmospheric Research (NCAR) GV aircraft and 
new mini-dropsonde. 

 
 
 
Figure SB1. The National Center for Atmospheric Research (NCAR) GV aircraft and 
new mini-dropsonde. 

NCAR	  GV	  and	  mini-‐dropsonde	  



 

Continuously cycled wrf-dart ensemble from 28 Apr – 26 June 2012 

 

Daily hi-res forecasts from single member analysis @ 00 & 12 UTC 

 

WRF 3.3.1, CONUS 15 km dx, 40 levels 

  - Tiedtke, RRTMG+AO climatology, MYJ, Morrison, Noah 

 

DART – 50 members, 6-hr cycling,  

adaptive inflation & localization,  

sampling error correction, ~ 635(8)  

km half-width H(V) localization 

 

Soil states run free for each member 

  - TSLB, SMOIS, SH2O, TSK 

 

Analysis downscaled to 3 km on 

2/3rds CONUS domain for forecast,  

verif. limited to hatched region 

Real-time WRF-DART exercise - Spring 2012 

	  
	  
	  
	  
	  
	  
	  
	  
	  

WRF Model and Domain 
•  WRF	  V3.3.1	  

•  CONUS	  15	  [3]	  km	  grid	  spacing,	  40	  
ver9cal	  levels	  

	  

•  50	  member	  EAKF	  (Anderson	  2001)	  
with	  DART	  soXware	  (Anderson	  
2009)	  used	  to	  ini9alize	  forecasts.	  

•  EnKF	  data	  assimila9on	  system	  using	  
6-‐hr	  cycling,	  adap9ve	  infla9on	  &	  
localiza9on,	  sampling	  error	  
correc9on	  	  

Romine	  et	  al.	  (2013)	  

WRF	  Domain	  

observations, employed vertical and horizontal locali-
zation to reduce spurious correlations due to sampling
errors, and used prior (before assimilation) adaptive
inflation (Anderson 2009) to preserve ensemble spread.
Table 2 notes some EAKF settings and lists the obser-
vations that were assimilated. More details regarding
the EAKF can be found in Romine et al. (2013, 2014).
The initial 15-km ensemble was produced by taking

Gaussian randomdraws with zeromean and covariances
from global background error covariances provided by
the WRF DA (Barker et al. 2012) system and adding
them to the 1800 UTC 30 April 2013 Global Forecast
System (GFS) analysis interpolated onto the 15-km
WRF Model domain (Barker 2005; Torn et al. 2006).

Perturbed LBCs for the EnKF system were produced
similarly. The randomly produced ensemble at 1800UTC
30 April served as ICs for 6-h WRF Model forecasts,
and the ensemble valid at 0000 UTC 1 May was the
prior ensemble for the first analysis. The 0000 UTC
1 May analysis ensemble served as ICs for 6-h WRF
Model forecasts, and the second EAKF analysis
occurred at 0600 UTC 1 May. This cyclic analysis/
forecast pattern with a 6-h period continued until
1200 UTC 16 June.
The EnKF DA system and associated WRF Model

forecasts were run solely over the 15-km domain. From
15 May to 15 June (32 days total), each 0000 and
1200UTCEnKF analysis initialized an ensemble of 48-h

FIG. 1. Computational domain. Objective verification only occurred in the speckled region of
the 3-km domain.

TABLE 1. Physical parameterizations used in all WRF Model forecasts. Cumulus parameterization was not used on the
convection-allowing 3-km grid.

Physical parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)
Long- and shortwave radiation Rapid Radiative Transfer Model for Global Climate Models

(RRTMG) with ozone and aerosol climatologies
Mlawer et al. (1997); Iacono et al.

(2008); Tegen et al. (1997)
Planetary boundary layer Mellor–Yamada–Janji!c (MYJ) Mellor and Yamada (1982);

Janji!c (1994, 2002)
Land surface model Noah Chen and Dudhia (2001)
Cumulus parameterization Tiedtke Tiedtke (1989); Zhang et al. (2011)
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WRF Model forecasts containing the nested 3-km
domain1 (Fig. 1). The 3-km ensembles were initialized
by interpolating 15-km EnKF analyses onto the 3-km
grid. In real time, EnKF analyses initialized either 10- or
30-member 3-km ensemble forecasts. The choice to
produce 10- or 30-member ensemble forecasts was
guided by the prospects for MPEX field program oper-
ations, with 30-member forecasts usually produced
when operations were deemed likely. However, after
MPEX concluded, 30-member 3-km ensemble forecasts
were retrospectively produced for those cases where only
10-member ensemble forecasts were generated in real
time, and all analyses herein investigate 30-member en-
sembles. Schwartz et al. (2014) showed that 50-member
ensemble forecasts of precipitation had comparable re-
liability, resolution, and skill as forecasts initialized from
randomly chosen 30-member subensembles that were
fairly insensitive to which 30 members (of 50) were se-
lected. Thus, we believe our 30-member forecasts well
represented the 50-member ensemble DA system. The
48-h ensemble forecasts employed perturbed LBCs pro-
duced identically as those described above for the cycling
EnKF DA system and in Romine et al. (2014).
Additionally, mainly to determine if certain ensemble

forecast characteristics were attributable to EnKF ICs
or were symptomatic of WRF Model biases, 0000 and
1200 UTC operational 0.58 GFS analyses were in-
terpolated onto the nested computational domain and
used to initialize deterministic 48-h WRF Model fore-
casts between 15 May and 15 June. During this period,
the GFS model was initialized with a continuously cy-
cling ‘‘hybrid’’ variational–ensemble DA system that
blended flow-dependent and static background error

covariances (e.g., Wang et al. 2013) and assimilated
many observations not assimilated by the limited-area
EnKF, such as satellite radiances. Furthermore, stan-
dard WRF Model preprocessing does not incorporate
GFS hydrometeor fields into WRF Model ICs.2 Thus,
GFS-initialized WRF Model forecasts did not contain
initial hydrometeors, whereas the continuously cycled
EnKF ICs contained nonzero hydrometeor fields.
Next, we present a subjective evaluation of selected

forecasts.

3. Ensemble forecast examples

Varied weather regimes during the MPEX period,
ranging from weakly forced convective events to strongly
forced severe weather outbreaks, offered many oppor-
tunities to test the performance of the 3-km ensemble.
Several cases are discussed that reveal both successes
and failures. The 15 and 31 May 2013 events detailed in
sections 3a and 3b were chosen because of their major
societal impacts, while section 3c summarizes several
additional cases representing forecasts across a broad
spectrum of storm modes and geographical regions.
We focus our subjective evaluation on forecasts of
simulated reflectivity and probabilities of hourly maxi-
mum2–5-kmupdraft helicity3 (UH;Kain et al. 2008, 2010)
accumulated between 1800 and 0600UTC (12h), although
6-h probabilities accumulated between 2100 and 0300UTC
yielded similar conclusions. UH has been documented as a
useful diagnostic for assessing the intensity of simulated

TABLE 2. Localization settings and analysis variables in the EAKF system, as well as the observations that were assimilated.

Parameter Value

Localization function Gaspari–Cohn
Horizontal localization half-width 635 km
Vertical localization half-width 8 km
Analysis variables Zonal and meridional wind components; perturbation potential temperature and

geopotential height; water vapor, cloud water, rainwater, ice, graupel, and snow
mixing ratios; rainwater and ice number concentrations; diabatic heating

Assimilated observations Radiosonde, aircraft, METAR, surface synoptic observation (SYNOP), buoy,
ship, atmospheric motion vectors, global positioning system refractivity

1 At 0000 and 1200 UTC, two sets of ensemble forecasts were
produced. The first set was for DA purposes and consisted of a 6-h
50-member ensemble forecast with the 3-km nest removed to ad-
vance the ensemble to the next analysis time. The second set was
the ensemble of 48-h forecasts with the 3-km nest included. Thus,
although there was two-way feedback during the 48-h forecasts
(section 2a), 3-km forecasts did not impact the cycling EnKF
DA system.

2 Hydrometeor partitioning in the WRF Model is a function of
microphysics and vertical velocity, which is a function of horizontal
grid length. Thus, unless the WRF Model configuration has the
same resolution and microphysics as the model providing the ICs
(here, the GFS), it is preferable that the WRF Model produce its
own hydrometeors based on the relative humidity ICs (J. Bresch
2015, personal communication). It is standard practice that WRF
Model forecasts begin from zero hydrometeor fields when an ex-
ternal model provides the ICs.

3 Updraft helicity is the integral of the product of vertical velocity
and vertical vorticity between two layers.
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Tables	  adapted	  from	  Schwartz	  et	  al.	  (2015)	  
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observations, employed vertical and horizontal locali-
zation to reduce spurious correlations due to sampling
errors, and used prior (before assimilation) adaptive
inflation (Anderson 2009) to preserve ensemble spread.
Table 2 notes some EAKF settings and lists the obser-
vations that were assimilated. More details regarding
the EAKF can be found in Romine et al. (2013, 2014).
The initial 15-km ensemble was produced by taking

Gaussian randomdraws with zeromean and covariances
from global background error covariances provided by
the WRF DA (Barker et al. 2012) system and adding
them to the 1800 UTC 30 April 2013 Global Forecast
System (GFS) analysis interpolated onto the 15-km
WRF Model domain (Barker 2005; Torn et al. 2006).

Perturbed LBCs for the EnKF system were produced
similarly. The randomly produced ensemble at 1800UTC
30 April served as ICs for 6-h WRF Model forecasts,
and the ensemble valid at 0000 UTC 1 May was the
prior ensemble for the first analysis. The 0000 UTC
1 May analysis ensemble served as ICs for 6-h WRF
Model forecasts, and the second EAKF analysis
occurred at 0600 UTC 1 May. This cyclic analysis/
forecast pattern with a 6-h period continued until
1200 UTC 16 June.
The EnKF DA system and associated WRF Model

forecasts were run solely over the 15-km domain. From
15 May to 15 June (32 days total), each 0000 and
1200UTCEnKF analysis initialized an ensemble of 48-h

FIG. 1. Computational domain. Objective verification only occurred in the speckled region of
the 3-km domain.

TABLE 1. Physical parameterizations used in all WRF Model forecasts. Cumulus parameterization was not used on the
convection-allowing 3-km grid.

Physical parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)
Long- and shortwave radiation Rapid Radiative Transfer Model for Global Climate Models

(RRTMG) with ozone and aerosol climatologies
Mlawer et al. (1997); Iacono et al.

(2008); Tegen et al. (1997)
Planetary boundary layer Mellor–Yamada–Janji!c (MYJ) Mellor and Yamada (1982);

Janji!c (1994, 2002)
Land surface model Noah Chen and Dudhia (2001)
Cumulus parameterization Tiedtke Tiedtke (1989); Zhang et al. (2011)
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WRF Model forecasts containing the nested 3-km
domain1 (Fig. 1). The 3-km ensembles were initialized
by interpolating 15-km EnKF analyses onto the 3-km
grid. In real time, EnKF analyses initialized either 10- or
30-member 3-km ensemble forecasts. The choice to
produce 10- or 30-member ensemble forecasts was
guided by the prospects for MPEX field program oper-
ations, with 30-member forecasts usually produced
when operations were deemed likely. However, after
MPEX concluded, 30-member 3-km ensemble forecasts
were retrospectively produced for those cases where only
10-member ensemble forecasts were generated in real
time, and all analyses herein investigate 30-member en-
sembles. Schwartz et al. (2014) showed that 50-member
ensemble forecasts of precipitation had comparable re-
liability, resolution, and skill as forecasts initialized from
randomly chosen 30-member subensembles that were
fairly insensitive to which 30 members (of 50) were se-
lected. Thus, we believe our 30-member forecasts well
represented the 50-member ensemble DA system. The
48-h ensemble forecasts employed perturbed LBCs pro-
duced identically as those described above for the cycling
EnKF DA system and in Romine et al. (2014).
Additionally, mainly to determine if certain ensemble

forecast characteristics were attributable to EnKF ICs
or were symptomatic of WRF Model biases, 0000 and
1200 UTC operational 0.58 GFS analyses were in-
terpolated onto the nested computational domain and
used to initialize deterministic 48-h WRF Model fore-
casts between 15 May and 15 June. During this period,
the GFS model was initialized with a continuously cy-
cling ‘‘hybrid’’ variational–ensemble DA system that
blended flow-dependent and static background error

covariances (e.g., Wang et al. 2013) and assimilated
many observations not assimilated by the limited-area
EnKF, such as satellite radiances. Furthermore, stan-
dard WRF Model preprocessing does not incorporate
GFS hydrometeor fields into WRF Model ICs.2 Thus,
GFS-initialized WRF Model forecasts did not contain
initial hydrometeors, whereas the continuously cycled
EnKF ICs contained nonzero hydrometeor fields.
Next, we present a subjective evaluation of selected

forecasts.

3. Ensemble forecast examples

Varied weather regimes during the MPEX period,
ranging from weakly forced convective events to strongly
forced severe weather outbreaks, offered many oppor-
tunities to test the performance of the 3-km ensemble.
Several cases are discussed that reveal both successes
and failures. The 15 and 31 May 2013 events detailed in
sections 3a and 3b were chosen because of their major
societal impacts, while section 3c summarizes several
additional cases representing forecasts across a broad
spectrum of storm modes and geographical regions.
We focus our subjective evaluation on forecasts of
simulated reflectivity and probabilities of hourly maxi-
mum2–5-kmupdraft helicity3 (UH;Kain et al. 2008, 2010)
accumulated between 1800 and 0600UTC (12h), although
6-h probabilities accumulated between 2100 and 0300UTC
yielded similar conclusions. UH has been documented as a
useful diagnostic for assessing the intensity of simulated

TABLE 2. Localization settings and analysis variables in the EAKF system, as well as the observations that were assimilated.

Parameter Value

Localization function Gaspari–Cohn
Horizontal localization half-width 635 km
Vertical localization half-width 8 km
Analysis variables Zonal and meridional wind components; perturbation potential temperature and

geopotential height; water vapor, cloud water, rainwater, ice, graupel, and snow
mixing ratios; rainwater and ice number concentrations; diabatic heating

Assimilated observations Radiosonde, aircraft, METAR, surface synoptic observation (SYNOP), buoy,
ship, atmospheric motion vectors, global positioning system refractivity

1 At 0000 and 1200 UTC, two sets of ensemble forecasts were
produced. The first set was for DA purposes and consisted of a 6-h
50-member ensemble forecast with the 3-km nest removed to ad-
vance the ensemble to the next analysis time. The second set was
the ensemble of 48-h forecasts with the 3-km nest included. Thus,
although there was two-way feedback during the 48-h forecasts
(section 2a), 3-km forecasts did not impact the cycling EnKF
DA system.

2 Hydrometeor partitioning in the WRF Model is a function of
microphysics and vertical velocity, which is a function of horizontal
grid length. Thus, unless the WRF Model configuration has the
same resolution and microphysics as the model providing the ICs
(here, the GFS), it is preferable that the WRF Model produce its
own hydrometeors based on the relative humidity ICs (J. Bresch
2015, personal communication). It is standard practice that WRF
Model forecasts begin from zero hydrometeor fields when an ex-
ternal model provides the ICs.

3 Updraft helicity is the integral of the product of vertical velocity
and vertical vorticity between two layers.
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Tables	  adapted	  from	  Schwartz	  et	  al.	  (2015)	  

50-member WRF-DART Forecasts for  
MPEX Case Study of Severe 
Convection: 11-12 June 2013 



Case Overview:  
Mid-level Short-wave Trough 

WRF-‐DART	  analyses	  of	  400	  hPa	  vorHcity	  (shading,	  10-‐5	  s-‐1),	  heights	  (contours,	  dm),	  and	  winds	  
(vectors,	  m	  s-‐1).	  

1200	  UTC	  11	  June	   0000	  UTC	  12	  June	  



Case Overview:  
Lower-level thermodynamic boundaries 

WRF-‐DART	  analyses	  of	  0-‐1	  km	  equivalent	  potenHal	  temperature	  (shading,	  K),	  850	  hPa	  heights	  
(contours,	  dm),	  and	  0-‐1	  km	  winds	  (vectors,	  m	  s-‐1).	  

1200	  UTC	  11	  June	   0000	  UTC	  12	  June	  



WRF-‐DART	  analyses	  of	  0-‐1	  km	  equivalent	  potenHal	  temperature	  (shading,	  K),	  850	  hPa	  heights	  
(contours,	  dm),	  and	  0-‐1	  km	  winds	  (vectors,	  m	  s-‐1).	  

1200	  UTC	  11	  June	   0000	  UTC	  12	  June	  

Case Overview:  
Lower-level thermodynamic boundaries 



Model Reflectivity and Observation:  
2300 UTC 11 June 2013 

Observed	  

Member	  07	  

Member	  01	  

Member	  16	  

Ini9alized:	  1200	  UTC	  10	  June	  2013	  



Model Reflectivity and Observation:  
2300 UTC 11 June 2013 

Observed	  

Member	  07	  

Member	  01	  

Member	  16	  

Ini9alized:	  1200	  UTC	  10	  June	  2013	  

NEBRASKA	  



Model Reflectivity and Observation:  
2300 UTC 11 June 2013 

Observed	  

Member	  07	  

Member	  01	  

Member	  16	  

Ini9alized:	  1200	  UTC	  10	  June	  2013	  

Convec;on	  Metric:	  	  
maximum	  ver;cal	  
kine;c	  energy	  ≈	  

½(wmax)2	  	  



Pre-convective Profile Differences:  
1800 UTC 11 June 

c	  a	   b	  	  

Profile	  standardized	  difference	  (red	  line)	  and	  ensemble-‐mean	  (black	  line)	  profile.	  StaHsHcal	  significance	  at	  
the	  95%	  confidence	  level	  (gray	  shading).	  

Equivalent	  Poten;al	  Temperature	  (K)	   Water	  Vapor	  Mixing	  Ra;o	  (kg/kg)	   Poten;al	  Temperature	  (K)	  



Pre-convective Profile Differences:  
1800 UTC 11 June 

c	  a	   b	  	  

Profile	  standardized	  difference	  (red	  line)	  and	  ensemble-‐mean	  (black	  line)	  profile.	  StaHsHcal	  significance	  at	  
the	  95%	  confidence	  level	  (gray	  shading).	  

Equivalent	  Poten;al	  Temperature	  (K)	   Water	  Vapor	  Mixing	  Ra;o	  (kg/kg)	   Poten;al	  Temperature	  (K)	  

Low-‐level	  θe	  differences	  could	  be	  
modulated	  by	  dryline	  posi;on	  



Ensemble-Sensitivity Analysis 

•  Linear regression between ensemble model grid 
point and forecast metric 

ditions is computed using the ensemble sensitivity tech-
nique first outlined in Hakim and Torn (2008) and fur-
ther explored by Ancell and Hakim (2007). For an en-
semble of size M, the sensitivity of the ensemble-mean
value of the forecast metric J to an analysis state vari-
able x is determined by

!J
!x

!
cov"J, x#

var"x#
. "1#

Here x and J are 1 $ M ensemble estimates of the state
variable and forecast metric, respectively, with the en-
semble mean removed; cov denotes the covariance be-
tween the two arguments; and var is the variance. A
derivation of (1) and its relationship to adjoint sensi-
tivity analysis is found in Ancell and Hakim (2007). The
above equation represents linear regression where the
independent variable is an analysis grid point and the
dependent variable is the forecast metric. In the follow-
ing sections, initial condition sensitivities are deter-
mined for the 24-h forecast of average sea level pres-
sure (SLP) and average precipitation within a box that
includes the western half of Washington State (“west-
ern Washington”). This region is often impacted by
short-term forecast failures resulting from initial condi-
tion errors (McMurdie and Mass 2004) and is of interest
to the authors by proximity. We note that, in general,
the ensemble sensitivity technique is not limited to the
metrics and forecast lead hour we describe here.

3. Climatological results

Data drawn from the UW EnKF system are used to
determine the climatological sensitivity of pressure and
precipitation averaged in a box over western Washing-
ton. Climatological sensitivity is defined here as the
percentage of analysis cycles for which the ensemble
sensitivity of the forecast metric with respect to an
analysis grid point is different from zero at a certain
level of confidence. Specifically, a state variable can
produce a statistically significant change in the forecast
metric if

!!J
!x!" #s , "2#

where %s is the confidence interval on the linear regres-
sion coefficient (e.g., Wilks 2005, section 6.2.5). For ex-
ample, taking %s to be the 95% confidence interval (the
value used for the climatological results given below), if
(2) is satisfied, we may reject the null hypothesis that
changes to x do not change the forecast metric with
95% confidence. Regions with a high percentage of

sensitive forecast cycles may be regarded as potential
locations for siting new observations.

Figure 1a shows results for sensitivity of the 24-h
forecast of average SLP in the box over western Wash-
ington to SLP analyses. The region with the largest
percentage of sensitive forecast cycles is located over
the Pacific Ocean, with a maximum value of 44% of
cycles at (45°N, 132°W). This pattern qualitatively re-
flects the progression of weather systems from west to
east at a mean translation speed of 9 m s&1, which is
roughly consistent with the average speed of individual
eddies in the Northern Hemisphere midlatitude flow
(e.g., Hakim 2003). For shorter lead times, the region of
maximum sensitivity is located closer to western Wash-
ington (not shown).

Regions of consistent sensitivity in Fig. 1a predict
where additional SLP observations would most fre-
quently change the SLP forecast metric. The location of
maximum sensitivity is close to buoy 46005 (white dot).
In fact, this buoy failed on 26 December 2004 and
therefore observations from this location were not
available during the time period of this experiment.
This suggests that the absence of observations from
buoy 46005 may have adversely affected forecasts over
western Washington during these six months. In light of
this possibility, we will revisit this problem in section 5,
where the change in the 24-h SLP forecast associated
with a missing buoy is quantified by withholding a
nearby buoy from the analysis and comparing the pre-
dicted and actual changes in the forecast metric.

The forecast SLP metric is also frequently sensitive
to analyses of 850-hPa temperature and 500-hPa geo-
potential height. For 850-hPa temperature, there are
two main sensitive regions, one to the southwest of
Washington State near 43°N, 130°W, and another to the
east of the metric box (Fig. 1b). For 500-hPa geopoten-
tial height (Fig. 1c), the forecast metric is sensitive more
than 20% of the time to the region bounded by 40°–
60°N and 120°–160°W. We note that this region is lo-
cated a few hundred kilometers upstream of the region
of maximum SLP sensitivity, reflecting a moderate up-
stream tilt typical of baroclinic waves in the westerlies.

The second metric we consider is precipitation aver-
aged in the box over western Washington. Since sensi-
tivity can only be determined when the forecast metric
has nonzero variance, the percentage of sensitive cycles
is computed with respect to the total number of cycles
where the area-averaged precipitation in the box ex-
ceeds 1 mm in the ensemble-mean forecast for hours
18–24; 58% of all forecasts exceed this threshold. Sen-
sitivity of this metric to SLP shows a maximum of 40%
over the Pacific Ocean in a meridionally elongated re-
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Ancell	  and	  Hakim	  (2007);	  Hakim	  and	  Torn	  (2008)	  



Ensemble-Sensitivity Analysis 

•  Linear regression between ensemble model grid 
point and forecast metric 

•  Sensitivity of  J (vertical KE) to earlier forecast 
time state variable x (near-surface θe) 

ditions is computed using the ensemble sensitivity tech-
nique first outlined in Hakim and Torn (2008) and fur-
ther explored by Ancell and Hakim (2007). For an en-
semble of size M, the sensitivity of the ensemble-mean
value of the forecast metric J to an analysis state vari-
able x is determined by
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!
cov"J, x#

var"x#
. "1#

Here x and J are 1 $ M ensemble estimates of the state
variable and forecast metric, respectively, with the en-
semble mean removed; cov denotes the covariance be-
tween the two arguments; and var is the variance. A
derivation of (1) and its relationship to adjoint sensi-
tivity analysis is found in Ancell and Hakim (2007). The
above equation represents linear regression where the
independent variable is an analysis grid point and the
dependent variable is the forecast metric. In the follow-
ing sections, initial condition sensitivities are deter-
mined for the 24-h forecast of average sea level pres-
sure (SLP) and average precipitation within a box that
includes the western half of Washington State (“west-
ern Washington”). This region is often impacted by
short-term forecast failures resulting from initial condi-
tion errors (McMurdie and Mass 2004) and is of interest
to the authors by proximity. We note that, in general,
the ensemble sensitivity technique is not limited to the
metrics and forecast lead hour we describe here.

3. Climatological results

Data drawn from the UW EnKF system are used to
determine the climatological sensitivity of pressure and
precipitation averaged in a box over western Washing-
ton. Climatological sensitivity is defined here as the
percentage of analysis cycles for which the ensemble
sensitivity of the forecast metric with respect to an
analysis grid point is different from zero at a certain
level of confidence. Specifically, a state variable can
produce a statistically significant change in the forecast
metric if

!!J
!x!" #s , "2#

where %s is the confidence interval on the linear regres-
sion coefficient (e.g., Wilks 2005, section 6.2.5). For ex-
ample, taking %s to be the 95% confidence interval (the
value used for the climatological results given below), if
(2) is satisfied, we may reject the null hypothesis that
changes to x do not change the forecast metric with
95% confidence. Regions with a high percentage of

sensitive forecast cycles may be regarded as potential
locations for siting new observations.

Figure 1a shows results for sensitivity of the 24-h
forecast of average SLP in the box over western Wash-
ington to SLP analyses. The region with the largest
percentage of sensitive forecast cycles is located over
the Pacific Ocean, with a maximum value of 44% of
cycles at (45°N, 132°W). This pattern qualitatively re-
flects the progression of weather systems from west to
east at a mean translation speed of 9 m s&1, which is
roughly consistent with the average speed of individual
eddies in the Northern Hemisphere midlatitude flow
(e.g., Hakim 2003). For shorter lead times, the region of
maximum sensitivity is located closer to western Wash-
ington (not shown).

Regions of consistent sensitivity in Fig. 1a predict
where additional SLP observations would most fre-
quently change the SLP forecast metric. The location of
maximum sensitivity is close to buoy 46005 (white dot).
In fact, this buoy failed on 26 December 2004 and
therefore observations from this location were not
available during the time period of this experiment.
This suggests that the absence of observations from
buoy 46005 may have adversely affected forecasts over
western Washington during these six months. In light of
this possibility, we will revisit this problem in section 5,
where the change in the 24-h SLP forecast associated
with a missing buoy is quantified by withholding a
nearby buoy from the analysis and comparing the pre-
dicted and actual changes in the forecast metric.

The forecast SLP metric is also frequently sensitive
to analyses of 850-hPa temperature and 500-hPa geo-
potential height. For 850-hPa temperature, there are
two main sensitive regions, one to the southwest of
Washington State near 43°N, 130°W, and another to the
east of the metric box (Fig. 1b). For 500-hPa geopoten-
tial height (Fig. 1c), the forecast metric is sensitive more
than 20% of the time to the region bounded by 40°–
60°N and 120°–160°W. We note that this region is lo-
cated a few hundred kilometers upstream of the region
of maximum SLP sensitivity, reflecting a moderate up-
stream tilt typical of baroclinic waves in the westerlies.

The second metric we consider is precipitation aver-
aged in the box over western Washington. Since sensi-
tivity can only be determined when the forecast metric
has nonzero variance, the percentage of sensitive cycles
is computed with respect to the total number of cycles
where the area-averaged precipitation in the box ex-
ceeds 1 mm in the ensemble-mean forecast for hours
18–24; 58% of all forecasts exceed this threshold. Sen-
sitivity of this metric to SLP shows a maximum of 40%
over the Pacific Ocean in a meridionally elongated re-
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Dropsonde Impact on Dryline: 1200 UTC 11 June 

RelaHve	  improvement	  in	  (a)	  temperature	  and	  (b)	  specific	  humidity	  mean-‐absolute	  error	  between	  
the	  weak	  and	  strong	  members	  with	  respect	  to	  the	  sensiHve	  profiles	  (black)	  and	  all	  dropsondes	  
(dashed)	  iniHalized	  24-‐h	  prior.	  Levels	  with	  a	  dot	  denote	  where	  the	  difference	  is	  staHsHcally	  
significant	  at	  the	  95%	  confidence	  level.	  



Summary and Conclusions 

•  Forecast variability in the timing and location of  
convection over Nebraska. 

•  Convection forecasts sensitive to position of  upstream 
dryline, which modulates the pre-convective moisture. 

•  Sensitivity analysis can suggest regions for targeting to 
improve convective forecasts. 
–  Dropsondes near sensitive area show a more accurate forecast 

of  the pre-convective thermodynamic environment. 

–  Future work to assimilate these dropsondes. 

Berman,	  J.	  D.,	  R.	  D.	  Torn,	  G.	  S.	  Romine,	  M.	  L.	  Weisman:	  MWR,	  soon	  to	  be	  
submi_ed	  
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observations, employed vertical and horizontal locali-
zation to reduce spurious correlations due to sampling
errors, and used prior (before assimilation) adaptive
inflation (Anderson 2009) to preserve ensemble spread.
Table 2 notes some EAKF settings and lists the obser-
vations that were assimilated. More details regarding
the EAKF can be found in Romine et al. (2013, 2014).
The initial 15-km ensemble was produced by taking

Gaussian randomdraws with zeromean and covariances
from global background error covariances provided by
the WRF DA (Barker et al. 2012) system and adding
them to the 1800 UTC 30 April 2013 Global Forecast
System (GFS) analysis interpolated onto the 15-km
WRF Model domain (Barker 2005; Torn et al. 2006).

Perturbed LBCs for the EnKF system were produced
similarly. The randomly produced ensemble at 1800UTC
30 April served as ICs for 6-h WRF Model forecasts,
and the ensemble valid at 0000 UTC 1 May was the
prior ensemble for the first analysis. The 0000 UTC
1 May analysis ensemble served as ICs for 6-h WRF
Model forecasts, and the second EAKF analysis
occurred at 0600 UTC 1 May. This cyclic analysis/
forecast pattern with a 6-h period continued until
1200 UTC 16 June.
The EnKF DA system and associated WRF Model

forecasts were run solely over the 15-km domain. From
15 May to 15 June (32 days total), each 0000 and
1200UTCEnKF analysis initialized an ensemble of 48-h

FIG. 1. Computational domain. Objective verification only occurred in the speckled region of
the 3-km domain.

TABLE 1. Physical parameterizations used in all WRF Model forecasts. Cumulus parameterization was not used on the
convection-allowing 3-km grid.

Physical parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)
Long- and shortwave radiation Rapid Radiative Transfer Model for Global Climate Models

(RRTMG) with ozone and aerosol climatologies
Mlawer et al. (1997); Iacono et al.

(2008); Tegen et al. (1997)
Planetary boundary layer Mellor–Yamada–Janji!c (MYJ) Mellor and Yamada (1982);

Janji!c (1994, 2002)
Land surface model Noah Chen and Dudhia (2001)
Cumulus parameterization Tiedtke Tiedtke (1989); Zhang et al. (2011)
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WRF Model forecasts containing the nested 3-km
domain1 (Fig. 1). The 3-km ensembles were initialized
by interpolating 15-km EnKF analyses onto the 3-km
grid. In real time, EnKF analyses initialized either 10- or
30-member 3-km ensemble forecasts. The choice to
produce 10- or 30-member ensemble forecasts was
guided by the prospects for MPEX field program oper-
ations, with 30-member forecasts usually produced
when operations were deemed likely. However, after
MPEX concluded, 30-member 3-km ensemble forecasts
were retrospectively produced for those cases where only
10-member ensemble forecasts were generated in real
time, and all analyses herein investigate 30-member en-
sembles. Schwartz et al. (2014) showed that 50-member
ensemble forecasts of precipitation had comparable re-
liability, resolution, and skill as forecasts initialized from
randomly chosen 30-member subensembles that were
fairly insensitive to which 30 members (of 50) were se-
lected. Thus, we believe our 30-member forecasts well
represented the 50-member ensemble DA system. The
48-h ensemble forecasts employed perturbed LBCs pro-
duced identically as those described above for the cycling
EnKF DA system and in Romine et al. (2014).
Additionally, mainly to determine if certain ensemble

forecast characteristics were attributable to EnKF ICs
or were symptomatic of WRF Model biases, 0000 and
1200 UTC operational 0.58 GFS analyses were in-
terpolated onto the nested computational domain and
used to initialize deterministic 48-h WRF Model fore-
casts between 15 May and 15 June. During this period,
the GFS model was initialized with a continuously cy-
cling ‘‘hybrid’’ variational–ensemble DA system that
blended flow-dependent and static background error

covariances (e.g., Wang et al. 2013) and assimilated
many observations not assimilated by the limited-area
EnKF, such as satellite radiances. Furthermore, stan-
dard WRF Model preprocessing does not incorporate
GFS hydrometeor fields into WRF Model ICs.2 Thus,
GFS-initialized WRF Model forecasts did not contain
initial hydrometeors, whereas the continuously cycled
EnKF ICs contained nonzero hydrometeor fields.
Next, we present a subjective evaluation of selected

forecasts.

3. Ensemble forecast examples

Varied weather regimes during the MPEX period,
ranging from weakly forced convective events to strongly
forced severe weather outbreaks, offered many oppor-
tunities to test the performance of the 3-km ensemble.
Several cases are discussed that reveal both successes
and failures. The 15 and 31 May 2013 events detailed in
sections 3a and 3b were chosen because of their major
societal impacts, while section 3c summarizes several
additional cases representing forecasts across a broad
spectrum of storm modes and geographical regions.
We focus our subjective evaluation on forecasts of
simulated reflectivity and probabilities of hourly maxi-
mum2–5-kmupdraft helicity3 (UH;Kain et al. 2008, 2010)
accumulated between 1800 and 0600UTC (12h), although
6-h probabilities accumulated between 2100 and 0300UTC
yielded similar conclusions. UH has been documented as a
useful diagnostic for assessing the intensity of simulated

TABLE 2. Localization settings and analysis variables in the EAKF system, as well as the observations that were assimilated.

Parameter Value

Localization function Gaspari–Cohn
Horizontal localization half-width 635 km
Vertical localization half-width 8 km
Analysis variables Zonal and meridional wind components; perturbation potential temperature and

geopotential height; water vapor, cloud water, rainwater, ice, graupel, and snow
mixing ratios; rainwater and ice number concentrations; diabatic heating

Assimilated observations Radiosonde, aircraft, METAR, surface synoptic observation (SYNOP), buoy,
ship, atmospheric motion vectors, global positioning system refractivity

1 At 0000 and 1200 UTC, two sets of ensemble forecasts were
produced. The first set was for DA purposes and consisted of a 6-h
50-member ensemble forecast with the 3-km nest removed to ad-
vance the ensemble to the next analysis time. The second set was
the ensemble of 48-h forecasts with the 3-km nest included. Thus,
although there was two-way feedback during the 48-h forecasts
(section 2a), 3-km forecasts did not impact the cycling EnKF
DA system.

2 Hydrometeor partitioning in the WRF Model is a function of
microphysics and vertical velocity, which is a function of horizontal
grid length. Thus, unless the WRF Model configuration has the
same resolution and microphysics as the model providing the ICs
(here, the GFS), it is preferable that the WRF Model produce its
own hydrometeors based on the relative humidity ICs (J. Bresch
2015, personal communication). It is standard practice that WRF
Model forecasts begin from zero hydrometeor fields when an ex-
ternal model provides the ICs.

3 Updraft helicity is the integral of the product of vertical velocity
and vertical vorticity between two layers.
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