

3D Estimates of Analysis and Short-Range Forecast Error Variances

Jie Feng, Zoltan Toth Global Systems Division, ESRL/OAR/NOAA, Boulder, CO, USA Malaquias Peña

Environmental Modeling Center, NCEP/NWS/NOAA, College Park, MD, USA

Acknowledgment to Hongli Wang, Yuanfu Xie, Scott Gregory and Isidora Jankov 7th EnKF Data Assimilation Workshop PSU, 2016-05-25

Outline

- Motivation
- Method and experimental setup
- Error estimation in QG model OSSE
- Preliminary results from GFS model
- Discussions and future work

Motivation

Accurate estimates of error variances in numerical analyses and forecasts are critical:

- Evaluation of forecast system
- Tuning of data assimilation (DA) system
- Proper initialization of ensemble forecasts

Traditional methods:

Observations as proxy

- Sparse observations no gridded information
- Fraught with observational error (including representativeness error)

DA schemes themselves

- Computationally expensive
- Affected by same assumptions used in DA scheme, potentially biased/inaccurate estimates

Short-range forecasts (forecast minus analysis)

• Ignore model forecast related uncertainties

Statistical Analysis and Forecast Error (SAFE) Estimation

Can we estimate unknown parameters with observed quantities?

Cost Function and Relevant Assumptions

$$\frac{d_i^2}{d_i^2} = x_0^2 + x_i^2 - 2\rho_i x_0 x_i$$

Measurements Estimated quantities
$$I = \max(\left|d_i^2 - \hat{d}_i^2\right|) \cdot w_i^{-1}$$
$$F = \sqrt{(1+r_1)(1-r_1)}$$
$$f = \sqrt{(1+r_1)(1-r_1)}$$

- Sampling standard error of the mean (SEM)
- Minimization: Limited-memory BFGS

Connect measurements to estimates:

(1) How true error grows in time;
(2) How true forecast errors get decorrelated

from true analysis errors with increasing lead time.

$$ho_i =
ho_1^{i}$$

Exponential

$$x_i^2 = x_0^2 e^{\alpha t_i}$$
Logistic

$$x_i^2 = \frac{S_\infty \cdot c}{e^{-\alpha t_i} + c}$$

$$c = x_0^2 / (S_\infty - x_0^2)$$

$$\frac{\alpha}{\alpha} : Saturatio}$$
h Rate n Value

Peña and

Toth

(2014)

Analysis / Forecast Error Correlation

- With no DA step, analysis & forecast errors correlate at 1.0
- With one DA step, errors become de-correlated, $1 > \rho_1 > 0$;
- With multiple (*i*) DA steps,
 -Assuming effectiveness of observing & DA systems stationary in time
- Note same analysis system used for both Initialization & verification

$$ho_i =
ho_1^{i}$$

Experimental Setup

Perfect model OSSE environment - Truth is known; Develop and test SAFE method that can be used in real world environment (w/o knowing truth).

Model: Quasi-geostrophic model (T21L3; Marshall and Molteni, 1993)

DA: Ensemble Kalman Filter (EnKF)

- •200-member ensemble;
- •1.69 inflation of background covariance, no localization;

Setup: 30-day forecast every 12hrs over 90-day period (180 cases).

Exponential Error Growth

- Differences between measured and modeled values may because:
 - (1) Initial decay of analysis error not presented in SAFE;
 - (2) Linear exponential growth is an approximation;
 - (3) Sampling errors of finite samples

Key Points

(1) Much smaller sample size, noisier input data, more difficult estimation;

(2) ρ_1 varies in space with the observing network and the DA scheme, present large-scale characteristics.

Practical approach

Step1. Estimate ρ_1 using spatially smoothed data;

Step2. Estimate other parameters with p₁ specified from spatially smoothed estimates.

		GB	NH	SH	TRO
X ₀ ²	Actl	42.23	32.12	72.82	25.32
	Etm	40.26	33.64	69.43	20.21
α	Actl	0.405	0.574	0.297	0.300
	Etm	0.405	0.567	0.281	0.326
ρ ₁	Actl	0.840	0.789	0.859	0.860
	Etm	0.841	0.787	0.853	0.840

Estimated spatial mean Of ρ GHT500 over GB, NH, SH and TRO all within 95% confidence are interval (1.96*SEM of ρ₁). 9

Practical Estimation

Error estimation in GFS operational forecasts

Period: 1Sep-30Nov, 2015; Variable: GHT500; Spatial Resolution: 1°X1°

Grid-point Error estimation of 500hPa GH

Estimated perceived errors at each grid point for all 2.5dy lead time are within 95% confidence interval

RAWINSONDE OBS

Assessment of statistical deviation from unknown truth may be possible with some accuracy. The SAFE is cheap and independent of each DA scheme.

- Describe initial decay of random analysis error variance in error growth model to improve accuracy of estimates;
- Spatial mean and 3D grid-point estimation of GFS total energy, wind, temperature, etc. other variables;
- Application areas:

(1) Specify first guess error variance in any DA scheme.(2) Set initial ensemble variance in any ensemble generation scheme.

THANKS

Comparison with EnKF & NMC error estimates

EnKF (ensemble spread) — Estimates of analysis and forecast error variance NMC — Estimates of background forecast error variance

		EnKF	NMC	SAFE
Actl Analysis	Spatial Corr	0.92	NA	0.90
Error Variance(m ²): 42.2	Error Variance(m ²)/ Deviation of Est	Before inflation: 19.0/55% After inflation: 32.1/24%	NA	39.8/6%
Actl Background Error	Spatial Corr	0.90	48hr–24hr : 0.63 24hr–12hr : 0.78	0.87
Variance12h (m ²): 50.3	Error Variance(m ²)/ Deviation of Est	Before inflation: 22.8/55% After inflation: 38.6/23%	48hr-24hr : 48.9/ 3% 24hr-12hr : 18.9/ 62%	47.5/6%

- EnKF: spatial distribution (good), magnitude (severely underestimated); □ Correlation may be lower when used with other DA schemes (e.g., hybrid GSI)
- NMC: spatial distribution (bad), magnitude (good, tuned in operational forecast systems);
- Both magnitude and spatial distribution reasonably estimated by SAFE
 At very low CPU cost compared to EnKF in operational setting
 Estimates independent of DA scheme used