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Motivation
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Accurate estimates of error variances in numerical analyses

and forecasts are critical:
 Evaluation of forecast system

 Tuning of data assimilation (DA) system

 Proper initialization of ensemble forecasts

Traditional methods:

 Observations as proxy

 Sparse observations – no gridded information

 Fraught with observational error (including representativeness error)

 DA schemes themselves

 Computationally expensive

 Affected by same assumptions used in DA scheme, potentially

biased/inaccurate estimates

 Short-range forecasts (forecast minus analysis)

 Ignore model forecast related uncertainties



Statistical Analysis and Forecast Error (SAFE) Estimation 
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Can we estimate unknown parameters with observed quantities?
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Connect measurements to estimates:
(1)How true error grows in time;

(2)How true forecast errors get decorrelated

from true analysis errors with increasing lead time.
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 Sampling standard error of the mean (SEM)
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 Minimization: Limited-memory BFGS

Cost Function and Relevant Assumptions 



 With no DA step, analysis & forecast errors correlate at
1.0

 With one DA step, errors become de-correlated, 1 > ρ1 >0;

 With multiple (i) DA steps,

-Assuming effectiveness of 

observing & DA systems 

stationary in time

 Note same analysis system used

for both Initialization & verification

Analysis / Forecast Error Correlation
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Experimental Setup

Setup: 30-day forecast every 12hrs over 90-day period (180 cases).

Perfect model OSSE environment - Truth is known; Develop and test SAFE 

method that can be used in real world environment (w/o knowing truth).

Model: Quasi-geostrophic model (T21L3; Marshall and Molteni, 1993)

DA: Ensemble Kalman Filter (EnKF)

200-member ensemble;

1.69 inflation of background covariance, no localization;

Forecasts

Analysis

Truth



Exponential Error Growth

3D spatial and temporal 

mean error variance of 

GHT500

 Assumptions consistent with data

 Differences between measured and modeled values may because:
(1) Initial decay of analysis error not presented in SAFE;

(2) Linear exponential growth is an approximation;

(3) Sampling errors of finite samples

x0
2 α ρ1

Actl  53.0, 0.38, 0.85

Est   48.4, 0.39, 0.84 
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x0  4% difference1.96*SEM~95% confidence interval 

(uncertainty bar)
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Grid-Point Error Estimation

Key Points

(1) Much smaller sample size, noisier input data, more difficult estimation;

(2) ρ1 varies in space with the observing network and the DA scheme, present  

large-scale characteristics. 

Practical approach

Step1. Estimate ρ1 using spatially smoothed data;

Step2. Estimate other parameters with ρ1 specified from spatially smoothed 

estimates.

GB NH SH TRO

X0
2 Actl

Etm

42.23

40.26

32.12

33.64

72.82

69.43

25.32

20.21

α
Actl

Etm

0.405

0.405

0.574

0.567

0.297

0.281

0.300

0.326

ρ1
Actl

Etm

0.840

0.841

0.789

0.787

0.859

0.853

0.860

0.840

ρ1 varies only moderately: 0.78-0.86

Estimated spatial mean ρ1 of

GHT500 over GB, NH, SH and TRO

are all within 95% confidence

interval (1.96*SEM of ρ1).



Practical Estimation

Global mean 
of grid-point 
value: 

x0
2 40.0 / 42.2

Black dots: 

estimates are 

out of 95% level 

defined  by 

1.96*SEM of x0
2 

23%

Estimated  x0
2

Black dots: 

estimates are 

out of 95% 

level defined 

by 1.96*SEM 

of α 16%

Estimated α

Actual  x0
2 Actual α

Prescribed ρ Ratio of grid-point within 95% level

Spatial corr  
with the truth: 
x0

2 0.81

Spatial corr  
with the truth: 
α 0.85

Global mean 
of grid-point 
value: 

α 0.37 / 0.38
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Error estimation in GFS operational forecasts

Period: 1Sep-30Nov, 2015; Variable: GHT500; Spatial Resolution: 1oX1o

NH (30o-90o)

True Error 

Perceived Error

NH        SH

x0
2      26.9      59.0

α 1.04      0.92

ρ 0.78      0.81

 Analysis error variance NH<SH;

 Error growth rate NH>SH, NH stronger baroclinic instability

 ρ SH>NH, sparser observations

SH (30o-90o)

True Error 

Perceived Error

NH (30o-90o)

Correlation ρ

SH (30o-90o)

Correlation ρ
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Grid-point Error estimation of 500hPa GH

Ana Error Variance Error Growth Rate Prescribed ρ

NH (30o-90o)

SH (30o-90o)

Estimation 

from weak 

Gaussian 

smoothed 

data 

(prescribe ρ)

Direct estimated ρ

from very strong 

Gaussian 

smoothed data

Kleist and Ide 

(2015) 

 x0
2 and ρ are

closely related to

the observational

network.

NH: evident land &

ocean difference

SH: basically zonal

distribution

 large α is related

to polar &

subtropical jet

stream.
Estimated perceived errors at each grid point for all 2.5dy lead time 

are within 95% confidence interval
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Assessment of statistical deviation from unknown truth may

be possible with some accuracy. The SAFE is cheap and

independent of each DA scheme.

 Describe initial decay of random analysis error

variance in error growth model to improve accuracy

of estimates;

 Spatial mean and 3D grid-point estimation of GFS total

energy, wind, temperature, etc. other variables;

 Application areas:

(1) Specify first guess error variance in any DA scheme.

(2) Set initial ensemble variance in any ensemble 
generation scheme.

Ongoing and Future Work
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 EnKF: spatial distribution (good), magnitude (severely underestimated);
 Correlation may be lower when used with other DA schemes (e.g., hybrid GSI)

 NMC: spatial distribution (bad), magnitude (good, tuned in operational
forecast systems);

 Both magnitude and spatial distribution reasonably estimated by SAFE
 At very low CPU cost compared to EnKF in operational setting
 Estimates independent of DA scheme used

Comparison with EnKF & NMC error estimates

EnKF  (ensemble spread) — Estimates of analysis and forecast error variance

NMC —— Estimates of background forecast error variance 

EnKF NMC SAFE

Actl Analysis 
Error 

Variance(m2): 

42.2

Spatial Corr 0.92 NA 0.90

Error 

Variance(m2)/

Deviation of Est

Before inflation:
19.0/55%

After inflation:
32.1/24%

NA 39.8/6%

Actl
Background 

Error 
Variance12h 

(m2): 50.3

Spatial Corr 0.90

48hr24hr : 
0.63

24hr12hr : 
0.78

0.87

Error 

Variance(m2)/

Deviation of Est

Before inflation:
22.8/55%

After inflation:
38.6/23%

48hr24hr :
48.9/ 3%
24hr12hr :
18.9/ 62%

47.5/6%


