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Motivation
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Accurate estimates of error variances in numerical analyses

and forecasts are critical:
 Evaluation of forecast system

 Tuning of data assimilation (DA) system

 Proper initialization of ensemble forecasts

Traditional methods:

 Observations as proxy

 Sparse observations – no gridded information

 Fraught with observational error (including representativeness error)

 DA schemes themselves

 Computationally expensive

 Affected by same assumptions used in DA scheme, potentially

biased/inaccurate estimates

 Short-range forecasts (forecast minus analysis)

 Ignore model forecast related uncertainties



Statistical Analysis and Forecast Error (SAFE) Estimation 
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Can we estimate unknown parameters with observed quantities?
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Connect measurements to estimates:
(1)How true error grows in time;

(2)How true forecast errors get decorrelated

from true analysis errors with increasing lead time.

2 2

0
it

i
x x e




2

i
i t

S c
x

e c











Exponential

Logistic

α : 

Growt

h Rate

2 2

0 0
/ ( )c x S x


 

S∞ :Saturatio

n Value

Peña and 

Toth 

(2014)

 Sampling standard error of the mean (SEM)

i
i

sd
SEM f

N
 

1 1
(1 )(1 )f r r  

i
i

i

i

SEM
w

SEM



 max : L∞norm

2 2 2

0 0
2

i i i i
d x x x x  

Measurements

Cost Function
2 2 1ˆmax( )i i iJ d d w


  

Estimated quantities

1
=

i

i
 

 Minimization: Limited-memory BFGS

Cost Function and Relevant Assumptions 



 With no DA step, analysis & forecast errors correlate at
1.0

 With one DA step, errors become de-correlated, 1 > ρ1 >0;

 With multiple (i) DA steps,

-Assuming effectiveness of 

observing & DA systems 

stationary in time

 Note same analysis system used

for both Initialization & verification

Analysis / Forecast Error Correlation
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Experimental Setup

Setup: 30-day forecast every 12hrs over 90-day period (180 cases).

Perfect model OSSE environment - Truth is known; Develop and test SAFE 

method that can be used in real world environment (w/o knowing truth).

Model: Quasi-geostrophic model (T21L3; Marshall and Molteni, 1993)

DA: Ensemble Kalman Filter (EnKF)

200-member ensemble;

1.69 inflation of background covariance, no localization;

Forecasts

Analysis

Truth



Exponential Error Growth

3D spatial and temporal 

mean error variance of 

GHT500

 Assumptions consistent with data

 Differences between measured and modeled values may because:
(1) Initial decay of analysis error not presented in SAFE;

(2) Linear exponential growth is an approximation;

(3) Sampling errors of finite samples

x0
2 α ρ1

Actl  53.0, 0.38, 0.85

Est   48.4, 0.39, 0.84 
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x0  4% difference1.96*SEM~95% confidence interval 

(uncertainty bar)
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Grid-Point Error Estimation

Key Points

(1) Much smaller sample size, noisier input data, more difficult estimation;

(2) ρ1 varies in space with the observing network and the DA scheme, present  

large-scale characteristics. 

Practical approach

Step1. Estimate ρ1 using spatially smoothed data;

Step2. Estimate other parameters with ρ1 specified from spatially smoothed 

estimates.

GB NH SH TRO

X0
2 Actl

Etm

42.23

40.26

32.12

33.64

72.82

69.43

25.32

20.21

α
Actl

Etm

0.405

0.405

0.574

0.567

0.297

0.281

0.300

0.326

ρ1
Actl

Etm

0.840

0.841

0.789

0.787

0.859

0.853

0.860

0.840

ρ1 varies only moderately: 0.78-0.86

Estimated spatial mean ρ1 of

GHT500 over GB, NH, SH and TRO

are all within 95% confidence

interval (1.96*SEM of ρ1).



Practical Estimation

Global mean 
of grid-point 
value: 

x0
2 40.0 / 42.2

Black dots: 

estimates are 

out of 95% level 

defined  by 

1.96*SEM of x0
2 

23%

Estimated  x0
2

Black dots: 

estimates are 

out of 95% 

level defined 

by 1.96*SEM 

of α 16%

Estimated α

Actual  x0
2 Actual α

Prescribed ρ Ratio of grid-point within 95% level

Spatial corr  
with the truth: 
x0

2 0.81

Spatial corr  
with the truth: 
α 0.85

Global mean 
of grid-point 
value: 

α 0.37 / 0.38
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Error estimation in GFS operational forecasts

Period: 1Sep-30Nov, 2015; Variable: GHT500; Spatial Resolution: 1oX1o

NH (30o-90o)

True Error 

Perceived Error

NH        SH

x0
2      26.9      59.0

α 1.04      0.92

ρ 0.78      0.81

 Analysis error variance NH<SH;

 Error growth rate NH>SH, NH stronger baroclinic instability

 ρ SH>NH, sparser observations

SH (30o-90o)

True Error 

Perceived Error

NH (30o-90o)

Correlation ρ

SH (30o-90o)

Correlation ρ
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Grid-point Error estimation of 500hPa GH

Ana Error Variance Error Growth Rate Prescribed ρ

NH (30o-90o)

SH (30o-90o)

Estimation 

from weak 

Gaussian 

smoothed 

data 

(prescribe ρ)

Direct estimated ρ

from very strong 

Gaussian 

smoothed data

Kleist and Ide 

(2015) 

 x0
2 and ρ are

closely related to

the observational

network.

NH: evident land &

ocean difference

SH: basically zonal

distribution

 large α is related

to polar &

subtropical jet

stream.
Estimated perceived errors at each grid point for all 2.5dy lead time 

are within 95% confidence interval
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Assessment of statistical deviation from unknown truth may

be possible with some accuracy. The SAFE is cheap and

independent of each DA scheme.

 Describe initial decay of random analysis error

variance in error growth model to improve accuracy

of estimates;

 Spatial mean and 3D grid-point estimation of GFS total

energy, wind, temperature, etc. other variables;

 Application areas:

(1) Specify first guess error variance in any DA scheme.

(2) Set initial ensemble variance in any ensemble 
generation scheme.

Ongoing and Future Work
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 EnKF: spatial distribution (good), magnitude (severely underestimated);
 Correlation may be lower when used with other DA schemes (e.g., hybrid GSI)

 NMC: spatial distribution (bad), magnitude (good, tuned in operational
forecast systems);

 Both magnitude and spatial distribution reasonably estimated by SAFE
 At very low CPU cost compared to EnKF in operational setting
 Estimates independent of DA scheme used

Comparison with EnKF & NMC error estimates

EnKF  (ensemble spread) — Estimates of analysis and forecast error variance

NMC —— Estimates of background forecast error variance 

EnKF NMC SAFE

Actl Analysis 
Error 

Variance(m2): 

42.2

Spatial Corr 0.92 NA 0.90

Error 

Variance(m2)/

Deviation of Est

Before inflation:
19.0/55%

After inflation:
32.1/24%

NA 39.8/6%

Actl
Background 

Error 
Variance12h 

(m2): 50.3

Spatial Corr 0.90

48hr24hr : 
0.63

24hr12hr : 
0.78

0.87

Error 

Variance(m2)/

Deviation of Est

Before inflation:
22.8/55%

After inflation:
38.6/23%

48hr24hr :
48.9/ 3%
24hr12hr :
18.9/ 62%

47.5/6%


