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Data assimilation in weather models NCAR

Filters and smoothers are applied regularly for data
assimilation in geophysics.

Current methods are based on variational approaches (3DVar
and 4DVar), Ensemble Kalman filters (EnKFs), or
combinations of the two.

Assumptions:
m The model dynamics are linear.
m Observations relate linearly to the model state variables.

m The model state and observation errors are Gaussian.
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Example problem
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Given:

m 100-member ensemble forecasts
are samples from prior error
distribution p(x)

m Radar reflectivity measurement at
* (denoted y).

Top and bottom panels show cross
sections through true storm at
observation location.

Reflectivity and storm-relative winds
are plotted.
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Prior ensemble at
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EnKF update at
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p(x]y) o< p(y|x)p(x)

Blue markers: prior samples from
joint probability distribution of
reflectivity and microphysics
variables

Yellow markers: true state

Black tickmarks: observed
reflectivity

Red markers: posterior samples
Green markers: posterior mean
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Particle filter update at NCAR
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Particle filters as a practical solutio NCAR

Challenges:

m PFs have known limitations for high-dimensional systems
(e.g., Bengtsson et al. 2008; Bickel et al. 2008; Snyder et al.

2008).

m They may also be inappropriate for models containing error
sources that are represented poorly or ignored.

Several attempts have been made to circumvent these issues:

van Leeuwen (2010), Frei and Kunsch (2013), Majda et al.
(2014), Cheng and Reich (2015), etc.
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The local PF

Poterjoy (MWR, 2016) and Poterjoy and Anderson (MWR, 2016)
introduce the local PF for data assimilation.

Local PF vs. EAKF (Anderson, 2001) using 40-variable Lorenz (1996) model:
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Prior with ob located 2 km lower
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p(x]y) o< p(y|x)p(x)

Blue markers: prior samples from
joint probability distribution of
reflectivity and microphysics
variables

Yellow markers: true state

Black tickmarks: observed
reflectivity

Red markers: posterior samples

Green markers: posterior mean
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Local PF update
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Blue markers: prior samples from
joint probability distribution of
reflectivity and microphysics
variables

Yellow markers: true state

Black tickmarks: observed
reflectivity

Red markers: posterior samples
Green markers: posterior mean
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Case study: idealized MCS
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m Model: NCAR Weather Research and Forecasting model
(3-km grid spacing with 40 vertical levels)

m Observations: radar velocity and reflectivity every 5 minutes
m Data assimilation: Local PF and EAKF in DART framework
using 100 members

See Sobash and Stensrud (2013) for details
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Local PF members (180 min)
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Probabilistic verification
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m Rank histograms calculated
from prior members every
10 min in convective cells
within leading edge of squall
line.

m Grid points where true
reflectivity > 0 dBZ are
used for verification,
assuming no spatial and
temporal correlations
between variables.
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RMSE and bias (
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m Horizontal mean RMSEs (solid) and bias (dashed) from 60-min

= Values are averaged in vicinity of squall line.
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RMSE and bias (20-min cycling)
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m Horizontal mean RMSEs (solid) and bias (dashed) from 60-min
forecasts.

= Values are averaged in vicinity of squall line.
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Forecast error evolution

Mean forecast RMSEs as a
function of time.

Values are averaged in vicinity
of squall line from 20-min obs
frequency experiment.

Initial error growth in EAKF

forecasts is much more rapid
than in PF forecasts.
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Summary NCAR

Particle filters provide a means of assimilating observations for
applications that are difficult for linear/Gaussian filters.

A new data assimilation system is developed that
approximates the particle filter within local neighborhoods of

observations (Poterjoy 2016).

The local PF is computationally affordable—with a cost
comparable to the NCAR DART EAKEF.

Recent testing of the local PF in the WRF model provide an
incentive to explore real applications.
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