
Localized ensemble-based tangent linear models and their 
use in propagating hybrid error covariance models

Sergey Frolov (UCAR), Craig H. Bishop (NRL-MRY)

Doug Allen (NRL-DC), David Kuhl (NRL-DC), Karl Hoppel (NRL-DC)

7th EnKF workshop
May 2016

1



Why we might want an ensemble-based TLM?

• Traditional TLMs are hard to maintain, are not projected to scale on the next 
generation computers, and are often not available for coupled models.

• Can we secure benefits of TLM-based estimation while maintaining 
computational scalability and easy-of maintenance of ensemble-based 
systems?
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What is an Ensemble-based TLM?
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• The Jacobian of a non-linear model
• Optimized for infinitesimal perturbations 
• Optimal for finding the MODE of the 

distribution using outer loops of the 
4DVAR

• Optimized for finite-size perturbations
• Optimal for finding the MEAN of the 

distribution without an outer loop in the 
4DVAR

• An ensemble approximation to the 
statistical TLM

• When ensemble matrix X is full-rank 
and ensemble perturbations are small, 
ensemble-based TLM is the same as a 
Traditional TLM
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Need for localization of ETLM

• Previous uses of ETLM: 
– Low-dimensional (1D) systems, ensemble sensitivity, EOF-based modeling
– Few ensemble members are needed to maintain the full rank of Mens.

• For hybrid-4DVAR
– We need to propagate full-rank Pclim:

– Updated Pclim will only maintain full-rank if TLM and ADJ are full rank
– Localization is needed because we have fewer ensemble members than state 

variables for a typical NWP model (Frolov and Bishop 2016, MWR)
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Local ensemble-based TLM
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Local ensemble-based TLM
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– Similar to finite difference models, ETLM updates each point based on the influence 
volume (stencil)

– Update is computed using an ensemble regression model for each point
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Local ensemble-based TLM
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for	each	points	“i”	build	an	ensemble	regression	model

– Similar to finite difference models, ETLM updates each point based on the influence 
volume (stencil)

– Update is computed using an ensemble regression model for each point
– If number of ensemble members is greater than number of grid points in the stencil, the 

ETLM computation is exact. 
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Local ensemble-based TLM
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for	each	points	“i”	build	an	ensemble	regression	model

– Similar to finite difference models, ETLM updates each point based on the influence 
volume (stencil)

– Update is computed using an ensemble regression model for each point
– If number of ensemble members is similar to the DOF that predict future state x1 the 

ETLM computation is accurate. 
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Validation tests

• Test with 1D wave dispersion problems (not shown)
– [Frolov Bishop 2016 MWR]

• Tests with coupled Lorenc-93 model (not shown)
– [Bishop et.al. under review QJRMS]

• Tests with 2D shallow-water model on a sphere (shown)
– [Allen et.al. under review MWR]

• Tests with a coarse resolution (T47) NWP model(shown)
– Active research

9



Shallow water model

• System:
– Shallow water equation + ozone as a tracer 
– Spectral T21 resolution (5.8° lon spacing at equator)
– Truth run with wave 1 topographic forcing (top left figure)
– Experiment runs during day 5-10 (highlighted in red)
– Perturbed observations EnKF with 100 members
– Stencil size 1000km, LETLM timestep 1 hour
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Comparisons with a traditional TLM
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Method:
– Compare analysis correction 

propagated for 6 hours using 
traditional TLM and LETLM

Results
– Little visual difference between 

6-hour forecast with TLM and 
ETLM (row 2 and 3)

– Traditional TLM is slightly better 
than ETLM (row 3)

– ETLM is significantly better than 
persistence (the EnVar
assumption for Pclim)

— pert. magnitude
- - persistence
— LETLM
… TLM

D. Allan et. al. (submitted MWR) 



Testing of ETLM in a Hybrid-4DVAR system
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Method:
– Compare Hybrid-4DVar executed with traditional TLM and LETLM

Results:
– Little difference between results with TLM and LETLM

Experiment WEP
Hybrid-4DVar (with LETLM) 78.22
Hybrid-4DVar 78.17
Hybrid-3EnVar 76.71
NODATA 72.12hi
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Experiments with an NWP model

• Ensemble generation
– NAVGEM global model (T47L60 )
– NAVDAS-AR (4DVAR) was cycled for 5 days
– 200 ET ensembles members were cycled for 5 days

• ETLM
– Optimal (global) stencil size: L=500 km and +-2 levels in the vertical

• Equivalent to 2 grid points at the equator or speed of 136 m/s
– State variables: U,V,T, and geopotential

• Perturbations
– 4DVAR analysis increment

• Validation
– Difference between two nonlinear runs
– NOGAPS TLM
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EARLY Results for 3D NWP (illustrated for U velocity)

• LETLM has skill over persistence and is slightly worse than the 
traditional TLM

• LETLM is very young (~2 month of work) vs. traditional TLM (~6 
years) 
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Next steps for NWP LETLM

• Improve ensemble (switch to perturbed obs. from ET?):
– on average, 45 eign-modes are retained out of 200 ens. members;
– ET pert. grow differently than forecast error;

• Tune LETLM differently with latitude and height.
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Summary

• LETLM is a promising novel way to construct TLM and ADJ 
operators for data assimilation and sensitivity studies

• ETLM will converge to the true TLM given enough ensemble 
members

• Localization method is proposed to deal with low-rank ensemble 
approximation

• Results in the 2D shallow water model show that LETLM is as skillful 
as a traditional TLM in a Hybrid-4DVAR study

• Active research is underway to develop a skillful LETLM for a 3D 
global weather model

– ~100 members might be enough?
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