Heavy rainfall prediction during the Meiyu seasons in Taiwan with the WRF-LETKF system:

what we have learned from the SoWMEX IOP8 event

Shu-Chih Yang^{1,2},

Shu-Hua Chen³, Hsiang-Wen Cheng¹, Chih-Chien Tsai⁴, , Takemasa Miyoshi⁵, and Keiichi Kondo⁵

¹ Depart. Of Atmospheric Sciences, National Central University, Taiwan
²GPS Science and Application Research Center, Taiwan
³ University of California at Davis, USA
⁴ Taiwan Typhoon Flood Research Institute, Taiwan
⁵ AICS/RIKEN, Japan

Motivation

Predicting the heavy rainfall during Meiyu seasons

- Mei-Yu precipitation in Taiwan is a product of multi-scale interactions among convective cloud, Mei-Yu front, southwesterly jet, and the topography effect (SoWMEX /TiMREX).
- Heavy rainfall prediction during Meiyus is challenging.

Rainfall accumulation on 2008/06/16

Outline

- 1. Impact of GPS-Radio Occultation data
- 2. Rainfall prediction with the dual-resolution, dual-scale assimilation
- 3. Further improvement with the radar data assimilation

Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC)

Tangent point

Compared to the RO-REF, RO-Bending angle is the upstream data and is more sensitive to moisture variations.

^VGPS

VLEO

Refractivity vs. Bending angle

Qv (shading) vs. COV(y_b, Qv) (contour)

BND has the great potential to improve the low level moisture field!

Moisture analysis (27km) and rainfall forecast (3km)

Yang et al. 2014

- Less optimal in short-term rainfall intensity!
- Need to better represent the convective-scale characteristics!

Dilemma in representing convective precipitation during Mei-Yus

114E

116E

118E

120E

122E

124E

114E 116E 118E 120E 122E 124E

Multi-scale localization in ensemble-based data assimilation

(Kondo and Miyoshi, 2013)

- 1. Compute the analysis increment regularly (with smaller-scale localization)
- 2. Compute the analysis increment with smoothed ensemble perturbations (with larger-scale localization)
- 3. Compute the analysis increment with smoothed ensemble perturbations (with smaller-scale localization)
- 4. Take the difference between 2 and 3
- 5. Add 1 and 4

Moisture transport in high-resolution grid

Dual-RES

dual-LOC

Qv at 750hPa (color) and convergence at 975hPa (contour)

DRD 26N 26N **Dual RES** 24N 24N Single LOC 22N 22N 20N 20N 18N 18N 118E 114E 116E 120E 122E 124E 114E 116E 118E 120E 122E 124E Qv Inc. (color), U>0 (contour) 28N DRD 26N 26N 24N 24N 22N 22N 20N 20N 18N 181 114E 116E 118E 120E 122E 124E 114E 116E 118E 120E 122E 124E

Convective-scale corrections in high-resolution grid

DRDL can better represent the convective-scale characteristics of vertical velocity!

24-h accumulated precipitation on 06/16/ 2008

- The correct description about large-scale moisture transport helps to predict the overall intensity and location of accumulated rainfall.
- The rainfall amount is significantly reduced in DRSL.

The DL method helps better represent the short-term precipitation intensity!

- Unable to capture the intense rainfall at evening
- Can we further improve the rainfall prediction with radar assimilation?
- The observation impact on the heavy rainfall prediction from radar data assimilation is < 6-hr.

Experiment setup

WRF-LETKF Radar Assimilation System (WLRAS, poster #1)

- 15-min analysis cycle performed at the 3-km domain
- Assimilate both Vr and Zh
- Mix localization (U,V large, W, Qr small)™
- Radar at Chigu and Kengtin

O-A (Vr) at 0.5 degree (~ 1km)

Precipitation prediction

The duration of heavy rainfall can be improved with a better environment condition, provided by the WRF-LETKF analysis with RO-bending angle!

Sensitivity experiments

- The environment for radar assimilation is critical for the performance of WLRAS
- Zh is critical for precipitation intensity prediction

Forecast skill

Conclusion

- To predict the heavy rainfall during the Meiyus, both the synoptic-scale moisture transport from South China Sea and convective-scale corrections from offshore to coastal region are important.
 - Assimilation of RO-bending angle has a capability of recovering a deeper moist layer.
 - The DRDL WRF-LETKF framework can further improve the short-term heavy rainfall prediction (intensity and timing)
- Assimilation of the radar data improves the rainfall nowcasting. However, how we initialize the ensemble greatly affects the forecast skill.
 - Such issue can be avoided when the radar assimilation is initialized from an ensemble better represents the dynamical (environment) uncertainties.

Observation operators for RO

Local RO operators are used to simulate the **refractivity** and **bending angle**. Tangent point LEO Earth $N = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{P_w}{T^2}$

• Local bending angle (Chen et al., 2010)

Kursinski et al. (1997):
$$\alpha(a) = -2a \int_{a}^{\infty} \frac{d(\ln n)/dx}{(x^2 - a^2)^{1/2}} dx$$
, $x = nr$

(1) Below model top:
$$\Delta \alpha = -2a \frac{d \ln n}{dx} \frac{1}{\sqrt{(x+a)}} \int_{x_i}^{x_{i+1}} \frac{1}{\sqrt{(x-a)}} dx$$

(2) Above the model top: α is computed following Healy and Thépaut (2006)

ARW-WRF v3.3.1 with YSU PBL + GCE ensemble microphysics + GD ensemble cumulus parameterization schemes

EXPS	outer	inner
SRSL	360km	N/A
DRSL	360km	60km
DRDL	360km	360-60km