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I A.J. Majda, I. Grooms, New perspectives on
superparameterization for geophysical turbulence, J.
Comp. Phy., 271, 60–77, 2014

Multiscale data assimilation

I Y. Lee and A.J. Majda, Multiscale methods for data
assimilation in turbulent systems, SIAM MMS 13(2),
691-173, 2015



Turbulent tracers

∂T

∂t
+ v · ∇T = DT (1)

T (x, t) : concentration of the tracer immersed in the fluid
v(x, t) : velocity field
D : scale-selective linear dissipation operator

I spread of CO2 in atmosphere, pollutants in environmental
science

I interaction of many complex factors in v invoke rare
fluctuations

I computationally expensive



Goal of this talk : data assimilation of turbulent tracers using

I Reduced-order (coarse resolution) forecast model : stochastic
superparameterization

I coarse-scale (large-scale) prediction

I Multiscale data assimilation method
I mixed contributions from the resolved large-scales and

unresolved small-scales
I Estimation of large-scale dynamics using mixed observations

cf. data assimilation using superparameterization with large-scale
observation - Harlim and Majda, MMS 2013



Turbulent flow : two-layer quasigeostrophic equation

∂tq1 = −ṽ1 · ∇q1 − ∂xq1 − (k2β + k2d)ṽ1 − ν∆4q1, (2)

∂tq2 = −ṽ2 · ∇q2 + ∂xq2 − (k2β − k2d)ṽ2 − r∆ψ2 − ν∆4q2,

q1 = ∆ψ1 +
k2d
2

(ψ2 − ψ1),

q2 = ∆ψ2 −
k2d
2

(ψ2 − ψ1)

I qj : potential vorticity in the upper (j = 1) and lower (j = 2)
layers

I r : linear Ekman drag coefficient at the bottom layer
I ν : hyperviscosity
I kd : deformation wavenumber
I kβ : nondimensionalized variation of the vertical projection of

Coriolis frequency with latitude
I vj = (−∂yψj + (−1)j−1, ∂xψj), j = 1, 2



Turbulent tracer with a mean gradient

I a tracer field with a large-scale mean tracer gradient (Majda
and Gershgorin Proc. Roy. Soc. ’13),
Tj = T ′j + ajx + bjy

∂tT
′
j +vj ·∇T ′j = −aj(ũj +(−1)j−1)−bj ṽj−κ∆4T ′j +F ext

j (3)

with an external forcing F ext
j = aj(−1)j−1

I T ′j = ajχj + bjφj where

along-jet : ∂tχj + vj · ∇χj = −ũj − κ∆4χj , (4)

across-jet : ∂tφj + vj · ∇φj = −ṽj − κ∆4φj . (5)

I tracer variance is maintained by the zonal and meridional
velocity components



Test regimes and reference simulation results
I High, mid and low latitude cases

High : kβ = 0 and r = 8,
Mid : k2β = k2d/4 and r = 2,

Low : k2β = k2d/2 and r = 0.5,

kd = 25, ν = 1.28× 10−15

I 256× 256 resolution, pseudo-spectral code, semi-implicit
Runge-Kutta method with a time step 2× 10−5

Figure: Snapshots of potential vorticities qj , j = 1, 2. The fourth column
is the temporally and zonally averaged zonal velocity.



Growth rates of the unstable modes with ky = 0

Kinetic energy (KE) and available potential energy (APE) spectra



Figure: (Top) Temporally and zonally averaged along-jet χj , j = 1, 2, and
across-jet, φj , j = 1, 2 tracer fields. (Bottom) Tracer variance spectra
about the mean.



Probability distribution of the along-jet (χ′j) and across-jet (φ′j)
tracer fields around the mean

dashed line : Gaussian fit



Stochastic superparameterization

Seamless multiscale method for the parameterization of the
unresolved sub-grid scales

I Apply a low-pass spatial filter denoted by (·)

∂t q̄1 = −¯̃v1 · ∇q̄1 − ṽ1 · ∇q1 − ∂x q̄1 − (k2β + k2d)v̄1 − ν∆2ω̄1,

∂t q̄2 = −¯̃v2 · ∇q̄2 − ṽ2 · ∇q2 + ∂x q̄2 − (k2β − k2d)v̄2 − r∆ψ̄2

− ν∆2ω̄2

(6)

where ωj = ∆ψj is the relative vorticity.

I Not closed under the large-scale variables

I Net transfer of kinetic energy from small to large scales



Modeling of eddy terms

Majda and Grooms JCP 2014

I randomly oriented plane waves

I conditional Gaussian closure; replace nonlinear terms in eddy
equations by additive stochastic forcing and linear
deterministic damping conditional to large-scale variables

I quasilinear eddy equations solved in formally infinite
embedded domains; no scale-gap

I interaction between large- and small-scale variables are
maintained by the conditional dependence of eddy equations
on the large-scale variables



Total kinetic energy and available potential energy spectra

Temporally and zonally averaged zonal velocity components for the
mid (left two) and low (right two) latitude cases



Reduced-order model for tracer fields

I obtained by adding additional diffusion, while tracers are
advected by large-scale velocity fields

I jets act as barriers to meridional tracer transport. The
transport in the along-jet direction becomes stronger than the
one in the across-jet direction

I The eddy diffusion is modeled by an anisotropic biharmonic
diffusion −κanisoD2

aniso where κaniso is a diffusion coefficient
and the linear dissipation Daniso is given by

Daniso = α∂xx + ∂yy (7)

with a tunable parameter α controlling the anisotropy of the
diffusion.



Tracer variance spectra of truth (DNS) and SP

κaniso = 1.1E-3 (high), 3.0E-4 (mid), 1.0E-4 (low)
α = 1.0 (high), 1.1 (mid), 1.4 (low)



Temporally and zonally averaged tracer mean of truth (DNS) and
SP



Low latitude case : Probability distributions of fluctuating tracer
fields around the mean state



Multiscale data assimilation

I Reduced-order forecast provides prior information only for the
resolved scales

I Observation contain contributions both from the resolved and
unresolved scales

I Use multiscale data assimilation methods to achieve accurate
estimation of the large-scale statistics



I For a tracer field c
c = (c̄ , c ′) (8)

c̄ and c ′ represent the resolved and unresolved scale
components respectively

I For simplicity consider linearly related observation w

w = Ḡ c̄ + G ′c ′ + ξo (9)

Ḡ and G ′ are observation matrix corresponding to the
resolved and unresolved scales. ξo is Gaussian with zero-mean
and a covariance ro I



I Full state c = (c , c ′) is assumed to be (conditionally)
Gaussian with a covariance R in the following form

R =

(
R̄

R ′(c)

)
(10)

I Small-scale covariance conditional to the large scale variable;
non-trivial and non-Gaussian statistics

I no cross correlation between the resolved and unresolved
scales

I It can be shown that for zero-mean c ′ which is Gaussian
conditional to c there is no correlation between c and c ′1

1Grooms, Lee & Majda, JCP 2014



Apply Bayes’ theorem to the prior forecast state c f with a prior
covariance R f yields

c̄a = c̄ f + K̄ (w − Ḡ c̄)

K̄ = R̄ f ḠT (Ḡ R̄ f ḠT + G ′R ′f G ′T + ro I )
−1

R̄a = (I − K̄ Ḡ )R̄ f

(11)

I standard Kalman update formula for c̄ with the same
observation w and an increased observation variance
G ′R ′G ′T + ro I is added to the Kalman gain matrix due to the
effect from the unresolved scales

I Use climatological variance of the unresolved scales; diagonal
covariance matrix for the unresolved scales

I Straightforward to apply standard ensemble data assimilation
methods to update c



Covariance inflation

I Reduced-order forecast model is an imperfect model and thus
model errors are unavoidable in the data assimilation

I Almost all ensemble members may collapse to one single
ensemble value with little variance

I Covariance inflation is an effective remedy increasing the
uncertainty in the forecast model

I We use additional covariance inflation which adds additional
noise to the prior ensemble members

c̄k ← c̄k + ξa (12)

ξa is Gaussian with zero mean and a variance r2a and i.i.d in
space and time



Filtering results

I True signal : DNS with 256× 256 resolution for both layers,
time step 2× 10−5

I Forecast : SP and eddy diffusion with 48× 48 resolution, time
step 10−4 (250 times less expensive than DNS)

I Large-scale variable is defined as the Fourier truncated
variable with a cutoff wavenumber k = 24

I Observation : upper layer tracer field on the 48× 48 grid

I Raw observation error : 5% of the upper layer tracer field
variance

I Observation interval : 0.01, comparable to or shorter than the
decorrelation times



I Effective observation error

√
raw obs error variance + small-scale variance (13)

I 50 ensemble members using EAKF

I run 500 cycles and use the last 300 cycles to measure filter
performance

time-averaged RMS error =
1

M −m0

M∑
m=m0+1

‖cam − ctm‖

(14)
and

time-averaged PC =
1

M −m0

M∑
m=m0+1

∑
xi
camc

t
m

‖cam‖‖ctm‖
(15)

where ‖ · ‖ represents the l2 norm on the coarse grid points
{xi}, m0 = 200 and M = 500.



High without inflation with inflation Effect obs error stationary std
χ1 1.56 (0.01) 0.51 (0.87) 0.60 1.04
χ2 1.61 (-0.01) 0.92 (0.65) N/A 1.06
φ1 1.65 (-0.00) 0.55 (0.88) 0.62 1.16
φ2 1.70 (0.00) 0.99 (0.57) N/A 1.10

Mid without inflation with inflation Effect obs error stationary std
χ1 4.55 (0.15) 1.75 (0.90) 1.95 4.19
χ2 4.21 (0.13) 2.83 (0.77) N/A 3.93
φ1 0.91 (0.11) 0.28 (0.88) 0.29 0.55
φ2 0.85 (0.10) 0.52 (0.60) N/A 0.60

Low without inflation with inflation Effect obs error stationary std
χ1 25 (0.65) 6.77 (0.98) 10.24 37.62
χ2 23 (0.61) 17.1 (0.96) N/A 21.50
φ1 0.18 (0.08) 0.10 (0.86) 0.10 0.18
φ2 0.29 (-0.01) 0.68 (0.57) N/A 0.24

Table: RMS errors and pattern correlations in parenthesis of the posterior
mean in the estimation of the large-scale variables



Temporally and zonally averaged tracer mean of true and filtered
signals



Low latitude case : Probability distributions of fluctuating tracer
fields around the mean state



Conclusions

I Coarse resolution forecast model for turbulent flows with
significantly reduced computational cost; 250 times cheaper
than full resolution model

I Multiscale ensemble filtering; skillfull filtering results and
recovery of fat-tail PDFs

Catastrophic filter divergence

I Y. Lee, A.J. Majda, D. Qi, Preventing catastrophic filter
divergence using adaptive additive inflation for baroclinic
turbulence, submitted to Monthly Weather Review

I X. Tong, A.J. Majda, D. Kelly, Nonlinear stability of the
ensemble Kalman filter with adaptive covariance inflation,
Comm. Math. Sci 14(5), 1283-1313, 2016

I X. Tong, A.J. Majda, D. Kelly, Nonlinear stability and
ergodicity of ensemble based Kalman filters, Nonlinearity,
29(2), 2016



Thanks for your attention
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