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Turbulent tracers

oT

T(x, t) : concentration of the tracer immersed in the fluid
v(x, t) : velocity field
D : scale-selective linear dissipation operator

» spread of CO, in atmosphere, pollutants in environmental
science

> interaction of many complex factors in v invoke rare
fluctuations

» computationally expensive



Goal of this talk : data assimilation of turbulent tracers using
» Reduced-order (coarse resolution) forecast model : stochastic
superparameterization
» coarse-scale (large-scale) prediction

» Multiscale data assimilation method

» mixed contributions from the resolved large-scales and
unresolved small-scales
» Estimation of large-scale dynamics using mixed observations

cf. data assimilation using superparameterization with large-scale
observation - Harlim and Majda, MMS 2013



Turbulent flow : two-layer quasigeostrophic equation
deqr = —V1-Var—0xqu — (k§ + k3)h — vA*qy, (2)
Brqr = —V2- VG2 + 0xq2 — (ki — kG)To — rA — vA gy,
k2
g = Ayt ?d(i/)z — 1),

k2
G = Ay — ?d(lbz — 1)

v

q; : potential vorticity in the upper (j = 1) and lower (j = 2)
layers

r : linear Ekman drag coefficient at the bottom layer

v . hyperviscosity

kg : deformation wavenumber

vV v VY

ks : nondimensionalized variation of the vertical projection of
Coriolis frequency with latitude

vi = (=0 + (=1Y 71 0xy), j=1,2

v



Turbulent tracer with a mean gradient

> a tracer field with a large-scale mean tracer gradient (Majda
and Gershgorin Proc. Roy. Soc. '13),
Tj=Tj+ax+ by

O Tj+vj VT = —a;(lj+(—1Y ") = b —sA* T/ + F* (3)
with an external forcing F>* = aj(—1yt
> Tj’ = ajxj + bj¢; where
along-jet : dyxj +vj- Vyj = —iij — kA*y;, (4)

across-jet : 0:¢; +v; - Vo, = —V; — /sA4q§j. (5)

> tracer variance is maintained by the zonal and meridional
velocity components



Test regimes and reference simulation results

» High, mid and low latitude cases
High: kg=0and r =8,
Mid : k§:k§/4 and r =2,
Low : kg =k3/2 and r =05,
kg =125, v=1.28x10"15
» 256 x 256 resolution, pseudo-spectral code, semi-implicit
Runge-Kutta method with a time step 2 x 107>
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Figure: Snapshots of potential vorticities g;, j = 1,2. The fourth column
is the temporally and zonally averaged zonal velocity.




Growth rates of the unstable modes with k, =0
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Kinetic energy (KE) and available potential energy (APE) spectra
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, high mid low
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Figure: (Top) Temporally and zonally averaged along-jet x;,j = 1,2, and
across-jet, ¢;,j = 1,2 tracer fields. (Bottom) Tracer variance spectra
about the mean.



Probability distribution of the along-jet () and across-jet (¢/)
tracer fields around the mean
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dashed line : Gaussian fit



Stochastic superparameterization

Seamless multiscale method for the parameterization of the
unresolved sub-grid scales

» Apply a low-pass spatial filter denoted by (%)

Oegr = —V1 - Va1 — V1 - Vg1 — 0kq1 — (kj + kG)n — v %y,
OeGo = —Vp - V2 — Vg - Va2 + 0xG2 — (kg — k3) V2 — riAY;
- VA2@2
(6)
where w; = A%- is the relative vorticity.
» Not closed under the large-scale variables
> Net transfer of kinetic energy from small to large scales



Modeling of eddy terms

Majda and Grooms JCP 2014

>

>

randomly oriented plane waves

conditional Gaussian closure; replace nonlinear terms in eddy
equations by additive stochastic forcing and linear
deterministic damping conditional to large-scale variables

quasilinear eddy equations solved in formally infinite
embedded domains; no scale-gap

interaction between large- and small-scale variables are
maintained by the conditional dependence of eddy equations
on the large-scale variables



Total kinetic energy and available potential energy spectra

high

Temporally and zonally averaged zonal velocity components for the
mid (left two) and low (right two) latitude cases

mid, top layer mid, bottom layer low, top layer low, bottom layer




Reduced-order model for tracer fields

» obtained by adding additional diffusion, while tracers are
advected by large-scale velocity fields

> jets act as barriers to meridional tracer transport. The
transport in the along-jet direction becomes stronger than the
one in the across-jet direction

» The eddy diffusion is modeled by an anisotropic biharmonic
diffusion —KanisoD2, e, Where Kapiso is a diffusion coefficient

and the linear dissipation D,,jso is given by
Daniso = O0xx + ayy (7)

with a tunable parameter o controlling the anisotropy of the
diffusion.



Tracer variance spectra of truth (DNS) and SP

Kaniso = 1.1E-3 (high), 3.0E-4 (mid), 1.0E-4 (low)
a = 1.0 (high), 1.1 (mid), 1.4 (low)




Temporally and zonally averaged tracer mean of truth (DNS) and
SP
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Low latitude case : Probability distributions of fluctuating tracer
fields around the mean state




Multiscale data assimilation

» Reduced-order forecast provides prior information only for the
resolved scales

» Observation contain contributions both from the resolved and
unresolved scales

» Use multiscale data assimilation methods to achieve accurate
estimation of the large-scale statistics



» For a tracer field ¢

€ and ¢’ represent the resolved and unresolved scale
components respectively

» For simplicity consider linearly related observation w
w=GE+ G +¢&, (9)

G and G’ are observation matrix corresponding to the
resolved and unresolved scales. &, is Gaussian with zero-mean
and a covariance r,/



» Full state ¢ = (¢, ¢’) is assumed to be (conditionally)
Gaussian with a covariance R in the following form

S i

» Small-scale covariance conditional to the large scale variable;
non-trivial and non-Gaussian statistics

» no cross correlation between the resolved and unresolved
scales

» It can be shown that for zero-mean ¢’ which is Gaussian
conditional to € there is no correlation between € and ¢’!

1Grooms, Lee & Majda, JCP 2014



Apply Bayes' theorem to the prior forecast state ¢f with a prior

covariance Rf yields

» standard Kalman update formula for ¢ with the same
observation w and an increased observation variance

(11)

G'R'G'T + rol is added to the Kalman gain matrix due to the

effect from the unresolved scales

» Use climatological variance of the unresolved scales; diagonal

covariance matrix for the unresolved scales

» Straightforward to apply standard ensemble data assimilation

methods to update ©



Covariance inflation

» Reduced-order forecast model is an imperfect model and thus
model errors are unavoidable in the data assimilation

> Almost all ensemble members may collapse to one single
ensemble value with little variance

» Covariance inflation is an effective remedy increasing the
uncertainty in the forecast model

» We use additional covariance inflation which adds additional
noise to the prior ensemble members

chechte, (12)

&, is Gaussian with zero mean and a variance r? and i.i.d in
space and time



Filtering results

» True signal : DNS with 256 x 256 resolution for both layers,
time step 2 x 107>

» Forecast : SP and eddy diffusion with 48 x 48 resolution, time
step 10~% (250 times less expensive than DNS)

» Large-scale variable is defined as the Fourier truncated
variable with a cutoff wavenumber k = 24

» Observation : upper layer tracer field on the 48 x 48 grid

» Raw observation error : 5% of the upper layer tracer field
variance

» Observation interval : 0.01, comparable to or shorter than the
decorrelation times



» Effective observation error

V/raw obs error variance + small-scale variance (13)

> 50 ensemble members using EAKF

> run 500 cycles and use the last 300 cycles to measure filter
performance

M

. 1
time-averaged RMS error = M Z |lc2 —cL||
m=my+1
(14)
and
M a -t
1 Y x: CmCm
time-averaged PC = ——— (15)
M — m m_zmozﬂ T cs]
where || - || represents the /, norm on the coarse grid points

{X,'}, mgo = 200 and M = 500.



High

without inflation

with inflation

Effect obs error

stationary std

X1 1.56 (0.01) 0.51 (0.87) 0.60 1.04
X2 1.61 (-0.01) 0.92 (0.65) N/A 1.06
01 1.65 (-0.00) 0.55 (0.88) 0.62 1.16
b2 1.70 (0.00) 0.99 (0.57) N/A 1.10
Mid | without inflation | with inflation | Effect obs error | stationary std
X1 4.55 (0.15) 1.75 (0.90) 1.95 4.19
X2 4.21 (0.13) 2.83 (0.77) N/A 3.93
01 0.91 (0.11) 0.28 (0.88) 0.29 0.55
b2 0.85 (0.10) 0.52 (0.60) N/A 0.60
Low | without inflation | with inflation | Effect obs error | stationary std
X1 25 (0.65) 6.77 (0.98) 10.24 37.62
X2 23 (0.61) 17.1 (0.96) N/A 21.50
01 0.18 (0.08) 0.10 (0.86) 0.10 0.18
b2 0.29 (-0.01) 0.68 (0.57) N/A 0.24

Table: RMS errors and pattern correlations in parenthesis of the posterior
mean in the estimation of the large-scale variables



Temporally and zonally averaged tracer mean of true and filtered
signals
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Low latitude case : Probability distributions of fluctuating tracer
fields around the mean state

posterior




Conclusions

» Coarse resolution forecast model for turbulent flows with
significantly reduced computational cost; 250 times cheaper
than full resolution model

» Multiscale ensemble filtering; skillfull filtering results and
recovery of fat-tail PDFs

Catastrophic filter divergence

» Y. Lee, A.J. Majda, D. Qi, Preventing catastrophic filter
divergence using adaptive additive inflation for baroclinic
turbulence, submitted to Monthly Weather Review

» X. Tong, A.J. Majda, D. Kelly, Nonlinear stability of the
ensemble Kalman filter with adaptive covariance inflation,
Comm. Math. Sci 14(5), 1283-1313, 2016

» X. Tong, A.J. Majda, D. Kelly, Nonlinear stability and
ergodicity of ensemble based Kalman filters, Nonlinearity,
29(2), 2016



Thanks for your attention
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