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Benefits
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Development of all-sky microwave assimilation at ECMWF

Within the operational system (9km resolution with incremental 4D-Var and flow-dependent covariances
from EDA)

24h forecast sensitivity diagnostic (FSOI) in operational system
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FSOI 41r2 operations 10-Mar-2016 to 30-April-2016
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Normalised difference

All-sky microwave assimilation: synoptic impact to day 6
Change in hemispheric RMSE in 500hPa geopotential

26-Feb-2015 to 24-Aug-2015 from 340 to 359 samples. Verified against own-analysis.
Confidence range 95% with Sidak correction for 4 independent tests.

Z: SH -90° to —20°, 500hPa Z: NH 20° to 90°, 500hPa
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All-sky microwave assimilation

Change in RMS 500hPa geopotential error, adding all-sky instruments in full observing system
Average of 6 months verification. Cross-hatching = 95% significance

Early-range impact is mostly oceanic
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All-sky microwave assimilation principles

® “All-sky”

- Clear, cloudy and precipitating scenes are assimilated together, directly as
radiances

So far mainly WV-sensitive, not T-sensitive channels (ho AMSU-A/ATMS)
- Cloud and precipitation-capable observation operator: RTTOV-SCATT
- 4D-Var assimilation: forecast model provides TL and adjoint moist physics
® Direct information content:
- Water vapour, surface properties (surface windspeed)
- Cloud water, rain (low frequencies)
- Cloud ice, frozen precipitation (higher frequencies)

® Indirect information content (through 4D-Var “tracing” or ensemble
correlations):

- Dynamical state of the atmosphere (mass, temperature, winds)
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Frontal cloud and precipitation:
single-observation example at 190 GHz

Metop-B MHS 08Z, 15 Aug 2013
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Fraontal claninid and nrerinitatinn — all nhgervatinng
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Frantal clainid and nrecinitatinn — cingle all-ckv nhg
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Frontal cloud and precipitation — 190 GHz
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Does benefit come from WV in cloud, or cloud and precip itself?

Single-observation type impact on T+72 vector wind as % of full observing system (see ECMWF tech. memo. 741,
2014)

Ambitious target: match the impact of microwave T-sounding (7xAMSU-A + ATMS): 60%

Going from clear-sky scenes to all-sky scenes, no TL/AD hydrometeors: from 35% to 46% impact

Value of cloud and precipitation itself: from 46% to 50% impact
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SSMIS channel 37v, December 2014 — all data over ocean, including observations usually removed by QC
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Cold air outbreaks

Thanks to Katrin Lonitz and Richard Forbes

127 24™ August, 2013, 37v FG departure
[normalised]
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Cold air outbreaks
Thanks to Katrin Lonitz and Richard Forbes
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Cold air outbreaks

Thanks to Katrin Lonitz and Richard Forbes

Composite MODIS image on 24 August 2013 at 08 Z. e
area shown spans from 180°W to 60° W and from the equator

to 60°S.
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Allow SLW detrainment from shallow convection scheme

Thanks to Richard Forbes and Katrin Lonitz

IFS T+12 total column liquid water path (kg m-2)
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Cold air outbreak bias also affected SW radiative forcing
Thanks to Richard Forbes and Katrin Lonitz

CERES Net TOA SW discrepancy before CERES Net TOA SW discrepancy after
improvement improvement
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All-sky assimilation benefits:

® Better initial conditions in the moist and dynamical parts of the
analysis:

- Better synoptic forecasts out to day 6

- All-sky microwave “WV” observations now rival the impact of the full
infrared clear-sky observing system (geo-sounders, AIRS, 1ASI, CRIS)

- Improved cloud and precipitation forecasts? See later.

® Better diagnostic constraint of cloud and precipitation in the
forecast model

- Diagnosis of systematic model errors, e.g:
Cold air outbreaks — supercooled liquid water

Maritime stratocumulus — insufficient diurnal cycle
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Uncertainties: “mislocation”, i.e. the lack of either
representivity or predictability of cloud and
precipitation at smaller scales
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Spatial scales in FG departures at 19h
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FG and analysis departure standard deviation: scales
SSMI/S F-17 19h, 10-11 Dec 2014, 30S-30N
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Impact on precipitation: 19GHz fits to independent data

SSMIS F-16, not assimilated and at least 1h orbit displacement from active all-sky sensors
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Rain reality check

6h precipitation accumulations in a 5x5° box over Scotland
T+6 to T+12 forecast compared to rain gauges

.........................

52 54 58 58 B0

..............................

* Globally there is no significant difference in fit to rain-gauges between all-sky on
and all-sky off
* Even with 6h accumulation and 5 degree averaging, many locations verify badly
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Why the discrepancy?

® The issue — impact of all-sky:

- Independent 19 GHz microwave observations show clear precipitation
improvements in analysis and forecast, especially on broader scales

- Rain gauges apparently do not

® Well-known continuing challenges for predicting and observing
precipitation:

- All-sky microwave observations see the vertical integral of atmospheric
hydrometeors. This does not necessarily relate to the surface rain rate.

- Itis up to the forecast model to convert atmospheric hydrometeors into
realistic surface rainfall (state-dependent systematic errors probably
dominate)

- Representivity and accuracy of the rain gauges

- Predominantly oceanic microwave observations vs. land gauges.
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Uncertainties: nonlinearity
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The zero-gradient problem
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The zero-gradient problem in an ensemble context
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“Water vapour” radiance sensitivities help to avoid the zero
gradient problem
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Incremental 4D-Var can handle nonlinearities
Single observation example from Bauer et al. (QJ, 2010)

Nonlinear model (T511)
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Ensemble view

SSMIS 183+6.6 GHz brightness temp (TB) sensitive to deep convection and mid-tropospheric WV
50 member ensemble

Deep convection (scattering from frozen

precipitation particles decreases TB) Clear-sky
Number Of 40 = T T T 1 T T T 1 T T T 1 T T T T ]
ensemble - ]
o Ensemble FG PDF .
members - ]
per bin a0F- =
20— —
- Local (i.e. just this obs) ]
- particle filter analysis ]
0= Observation I -
C | -
- 1 -
- D1 ]
oLC 1 . . . 1 . Z . - | | . . n
180 200 220 240 26 280
TB K] q\

ENKF control FG  ens. mean FG  ENKF analysis

ADAPT symposium / EnKF workshop, 24 May 2016 Slide 33 —AECMWF
A\ 4




Single-obs versus full observing system

® Single observation assimilation is “easy”:

- All-sky incremental 4D-Var has consistently demonstrated its ability to fit

single observations of cloud and precipitation in nonlinear regimes (Bauer et
al. 2010, TM 741)

- 1D-Var and 1D particle filters can also fit cloud and precipitation very
successfully (we have not tested all-sky single obs EnKF)

® The real aim is to best fit all observations, and to produce a
successful forecast

- The analysis does not attempt (and cannot) fit all the small-scale
precipitation variability

- The analysis is taking place at broader scales than that of a single cloud or
precipitation observation
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Quantifying uncertainties: what is observation error
and what background error?
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Symmetric observation error model

Background error (HBHT) versus observation error (R)
Geer and Bauer (2011, QJ)
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Using EnKF to diagnose model & obs error

As a function of “precipitation amount”, errors in SSMIS channel 19h (sensitive to rain)

All-sky error model (a=1)
is slightly cautious
compared to the real total
error (the std. dev. of FG
departures)

Still, the observation error
appears to be larger than
the background error (the
spread) in precipitation

Ensemble spread accounts
for a substantial part of
total error

(roughly) Clear sky Rainy
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All-sky EnKF at ECMWF

Massimo Bonavita and Mats Hamrud (EnKF talk tomorrow)
® Hamrud et al., Bonavita et al. (MWR, 2015) initial version did not
include all-sky radiance assimilation

- All-sky observation error modelling needed some thought.

® New series of initial experiments developing all-sky capability (50
members, Tco319, just EnKF, not hybrid):

New observation error model boosts errors as a function of nonlinearity
estimate

“VarQC” downweights outlying observations (vital for all-sky)

Careful choice of vertical localisation makes for much better results

Impact of all-sky in the EnKF looks similar to that in the full 4D-Var system

® How can an EnKF (making a linear analysis) replicate much of the
impact of all-sky found in incremental 4D-Var (nonlinear)?

- See earlier slides showing much of the impact of 4D-Var all-sky assimilation is
at broader spatial scales in more linear regimes.

ADAPT symposium / EnKF workshop, 24 May 2016 Slide 38 —AECMWF
A\ 4




Conclusion

® Uncertainties:

- Difficulty of improving the surface precipitation forecast over land

- Small-scale unpredictability of cloud and precipitation (<100km)

All-sky error models typically represent this as observation error

However the aim is not to fit the observed cloud and precipitation
exactly (unpredictable scales, nonlinear processes)

® Benefits of cloud and precipitation assimilation:

- On larger more linear spatial scales, we are simultaneously fitting many
individual, unpredictable observations (plus lots of more-predictable
traditional observations)

- All-sky microwave WV has become a major part of the observing system,
improving ECMWEF operational synoptic forecasts out to day 6

- It also helps diagnose and motivate forecast model improvements
addressing systematic errors in cloud and precipitation
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Backup slides
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The 4D-Var costfunction

1. We will vary model state x
to find the best analysis

2. Aiming to improve the fit between observations
y and simulated observations H(M(x))

|

J&) = —HME)D' Ry —HM®)) +(x — x B71 (x — xp)

3. But it must not get too far away
from the model background x,,

4. The relative weight given to observations versus
model background is controlled by their respective
error matrices R and B
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To find the costfunction minimum, follow the gradient:

® For observation [ at start of minimisation (at background x;),
gradient of the cost function J is:

Observed Nonlinear forward
Adjoint of Adjoint value Nonlinear ff)recast model
Gradient of cost ;cr(:::jisrfgmr:gii observation observation tmesteps 1-15
function with ohysics operator  gpseryation\ operator Model
respect to control error background
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MIiMmI...M] B (y; — Hi(M1-15(Xp)))
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Window channels (“imaging”):
surface properties, water vapour, cloud and precipitation

Increasing frequency [GHz]
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Sounding channels: temperature, water vapour, cloud and precipitation

Temperature sounding: Water vapour sounding:
Lower troposphere Mid troposphere Mid troposphere Upper troposphere
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