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Inverse Problems and Data Assimilation

Lagrangian Tracers: Oceanography

C. Jones, A. Apte, A. Stuart, ...
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Inverse Problem: Noisy Lagrangian Tracers in
Filtering Geophysical Flows

First rigorous math theory
(Nan Chen, Majda, Xin Tong, Nonlinearity 2014, JNLS 2015)

Observing L noisy trajectories Xj (t),

dXj

dt
= v(Xj (t), t) + σj Ẇj .

Recover or estimate the velocity ~v .

I Inherent nonlinearity in measurement.

I Build exact closed analytic formulas for
the optimal filter for the velocity field.

I Prove a mean field limit at long times.

1. Recovering random incompressible
flows

I Show an exponential increase in the
number of tracers for reducing the
uncertainty by a fixed amount – a
practical information barrier.
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2. Noisy Lagrangian tracers
for filtering random rotating compressible flows

(Nan Chen, Majda, Xin Tong, JNLS 2015)

I Rotating shallow water models with multiscale features:

I Slow modes – random incompressible geostrophically balanced (GB)
flows.

I Fast modes – random rotating compressible gravity waves.

I Highly nonlinear observations mixing GB and gravity modes.

I Proposing different filters.

I Full filter – full forecast model & tracer observations.
I Ideal reference GB filter – GB forecast model & GB observations.
I Reduced filter – GB forecast model & mixed observations – a practical

inexpensive imperfect filter.

I Rigorous math theory: Comparable high skill in recovering GB modes for all the
filters in the geophysical scenario with small Rossby number.
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Filtering the Turbulent Signals

Filtering is a two-step process involving statistical prediction of the state variables
through a forward operator followed by an analysis step at the next observation time
which corrects this prediction on the basis of the statistical input of noisy observations
of the system.
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Practical Issue
I Turbulent dynamical system.

I Huge phase space, N = O(106, 108, etc).

I Nonlinearity, small ensemble size M = O(50, 100).

Applied algorithm
I Finite ensemble Kalman filter, (Evensen, 1995; C. Bishop, J. Anderson 2001;

Kalnay, 2013). See M-H book.

Applied math
I Stuart, Reich,...

Central issues
I Why does EnKF often work well to estimate the mean with M ≤ N?

Surprising pathology
I Catastrophic filter divergence. For filtering forced dissipative system with

absorbing ball property such as L-96 model, EnKF can explode to machine
infinity in finite time! (Harlim and Majda 2008; Gottwald and Majda, NPG 2013)

Well posedness of EnKF
I Kelly, Law, Stuart, Nonlinearity 2014.
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Rigorous nonlinear stability for finite ensemble Kalman filter (EnKF)
(Xin Tong, Majda, Kelly, Nonlinearity 2015)

Filter divergence – a potential flaw for EnKF:

I Catastrophic filter divergence: the ensemble members diverging to infinity,

I Lack of stability: the ensemble members being trapped in locations far from the
true process.

Finding practical conditions and modifications to rule out filter divergence with rigorous
analysis:

I Ruling out catastrophic filter divergence by establishing an energy principle for
the filter ensemble.

I Looking for energy principles inherited by the Kalman filtering scheme.

I Looking for modification schemes of EnKF that ensures an energy principle and
preserving the original EnKF performance (Xin Tong, majda, Kelly, Comm. Math.
Sci., 2015).

I Verifying the nonlinear stability of EnKF through geometric ergodicity.

Rigorous example of catastrophic divergence:

I For filtering a nonlinear map with absorbing ball property (Kelly, Majda, Xin Tong,
PNAS 2015).

Outstanding problem: Why and when is there accuracy in mean for M ≤ N?
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Need Statistically Accurate Inexpensive Forecast
Models to Beat the Curse of Ensemble Size for

Prediction, State Estimation and UQ

The MMT equation

The MMT equation (Majda, McLaughlin and Tabak, 1997; Cai and M.M.T., Phys. D
2001)

iut = |∂x |
1
2 u + λ|u|2u − iAu + F .

Here we consider the case with the focusing nonlinearity, λ = −1, which induces
spatially coherent ’solitonic’ excitations at random spatial locations.

I The instability of collapsing solitons radiate energy to large scales producing
direct and inverse turbulent cascades.

I In geophysical applications energy oftern flows from small scales to large scales
(inverse cascade) creating a challenge for reduced modelling.

I Fractional dispersion are crucial with completely different behavior from NLS
equation!
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Visualization of |ψ(x , t)| from simulation with F0 = 0.0163; darker colors indicate
higher amplitudes. Here the number of Fourier modes are 642 ≈ 4000.

From Cai etal, Physica D 2001.
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High-resolution reference simulations

Simulation (a) uses F0 = 0.0163; (b) uses F0 = 0.01625. Both simulations are
damped only for 2600 < |k | < 4096 and |k | = 1.
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Uses of MMT model:

1. Novel low order modelling: stochastic superparameterization (Majda and
Grooms, JCP 2013; Grooms and Majda, Comm. Math. Sci. 2014).

2. Novel data assimilation (Branicki and Majda, JCP 2012; Grooms, Lee and
Majda, JCP 2014)

3. Extreme event prediction (Cousins and Sapsis, Phys. D. 2014)
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Stochastic Superparameterization in MMT

Spectra from simulations with 1/64 as many points as the reference simulation (a),
with no eddy terms (b) and with eddy terms (c).

12 / 20



Stochastic Superparameterization

1. A general framework for stochastic subgridscale modelling with no scale
separation and no small-scale equilibration based on the Gaussian closure
approximation and the point approximation.

2. Success in a difficult test problem with no scale separation (k−5/6 spectra),
coherent structures, dispersive waves, and an inverse cascade from unresolved
scales into the large scales.

3. Overcome curse of ensemble size with judicious model error.

– See research expository article Majda and Grooms, JCP 2013; Grooms and Majda,
PNAS, JCP 2013 for geophysical turbulence.

– See Khouider, Biello and Majda, Comm. Math. Sci. 2010; Deng, Khouider and
Majda, JAS 2015 for stochastic multi-cloud model.
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Multiscale Data Assimilation in Complex Turbulent
System

Superparameterization (SP) and Multiscale Data Assimilation.
I Tremendously large dimension of turbulent signals requires cheap and robust

coarse models for real prediction skills.

I SP is a cheap and robust under-resolved forecast model; approximates the large
scale dynamics and provides small-scale statistics to estimate both the resolved
and unresolved components of the true signal.

I Multiscale data assimilation framework – provides the estimate for the
large-scale dynamics using SP as a coarse forecast model and partial
observations of the true signal.

I Multiscale data assimilation shows robust filtering performance with a huge
computational savings; better performance than other ad hoc approaches in the
conventional (single-scale) data assimilation such as covariance inflation.

(Harlim & Majda, SIAM. J. MMS, 2013; Grooms, Lee & Majda, JCP 2014, MWR 2015;
Lee & Majda, SIAM. J. MMS, 2015)

14 / 20



Blended particle filters for large dimensional chaotic dynamical
systems.

Goal: Developing statistically accurate particle filters to capture non-Gaussian features
in large dimensional chaotic dynamical systems.

I Space decomposition u = (u1,u2), uj ∈ RNj , N1 + N2 = N, N1 � N.

I Blended filters:

I Particle filter – non-Gaussian statistics of u1.
I Kalman filter – conditional Gaussian statistics u2 given u1.

I Attractive feature – adaptively change of the subspaces as time evolves in
response to the uncertainty without a separation of time scales using nonlinear
statistical forecast models.

Nonlinear statistical forecast models:

I QG-DO – quasilinear Gaussian dynamical orthogonality method.

I MQG-DO – more sophisticated modified QG-DO method.

(Majda, Di Qi & Sapsis, PNAS 2014; Di Qi & Majda, Phys D. 2015; Sapsis & Majda,
Phys D. 2012; PNAS 2013)
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Lorenz 96 system
The Lorenz 96 system is a discrete periodic system described by the equations

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F , j = 0, . . . , J − 1,

with j = 40 the number of grids and Fi the deterministic forcing. See Majda & Harlim
book (2012). The quadratic part conserves energy. We will study the case of weakly
chaotic turbulence (F = 5), strongly chaotic turbulence (F = 8).
5 dim subspace of particles is used.
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Capturing non-Gaussian statistics F = 5, r0 = 2,∆t = 1, p = 4.
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Regime scatter plot: mode u7, u8
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Stochastic Parameterized (Nonlinear) Extended Kalman Filter (SPEKF)
and Dynamic Stochastic Superresolution (DSS)

I Cheap stochastic forecast models with judicious model error which are
statistically exactly solvable and learn stochastic parameters “on the fly” from
data

I DSS exploits SPEKF together with aliasing to achieve superresolution for
subgrid scale filtering

References:

I Majda and Harlim, Filtering Complex Turbulent Systems (Cambridge press 2012)

I Keating, Majda and Smith, Ocean turbulence (MWR 2012)

I Branicki and Majda, Intermittency, black swans, wave turbulence (JCP 2012)

I Nan Chen, Giannakis, Majda and Herbei, MCMC algorithm for intermittency
(SIAM/ASA JUQ 2014)

I Branicki and Majda, Turbulent Navier-Stokes (JCP 2016)
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Thank you
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