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Probabilistic forecasting problem:

Suppose the variables of interest x(t) € M C R" satisfy,
dx = a(x)dt+ b(x)dW,,

with distribution characterized by a density function p(x, t) that
satisfies a PDE called the Fokker-Planck equation,

1
dep=—V-(ap) + 5V -V (bb'p) = L*p.
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Probabilistic forecasting problem:
Given initial distribution p(x,0) = pp(x), one is interested to find

p(x, t) = ™ po(x)
and the corresponding statistics,
E[f](t) E/ f(x)p(x, t) dx.
Rn

of some function f.
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» If one knows a(x), b(x), M, BC’s, and IC’s, then solve the
Fokker-Planck equation with appropriate PDE solvers.



Probabilistic forecasting problem:

Classical solutions:

> If one knows a(x), b(x), M, BC's, and IC’s, then solve the
Fokker-Planck equation with appropriate PDE solvers.

» For high dimensional application, apply Monte-Carlo
(ensemble forecasting, see Epstein 1969, Leith 1974), i.e.,
Sample initial conditions x¥ ~ po(x) and solve an ensemble of
initial value problems,

dx = a(x)dt+ b(x)dW,
x(0) = x* k=1,...,K.

Suppose the ensemble solutions at time t; > 0 is denoted by
xK, then one can compute the statistics via Monte-Carlo,

1 N
BIA(e) = | FGoplx. e 5 3 F)
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Nonparametric forecasting

Problem: Given only a time series of of x; = x(t;),i =1,..., N,
solve the Fokker-Planck equation for p(x, t). In other words, £*,
a(x), b(x), M, and BC's are all unknown.
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Nonparametric forecasting

Problem: Given only a time series of of x; = x(t;),i =1,..., N,
solve the Fokker-Planck equation for p(x, t). In other words, £*,
a(x), b(x), M, and BC's are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, X; ~ peq(x), where L£*peg = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.



Lorenz model:

X = O'(_)/—X), _)./:X(p—Z)—y, 2:Xy—ﬁ2.

(Loading Video...)



lorenz63Forecast.mov
Media File (video/quicktime)


A 2D fast-slow stochastic system in a torus

Learning from a three-dimensional data (x(6, ¢), y(0, ¢),z(0, ¢))
whereas the intrinsic dynamical system is two dimensional (6, ¢).

(Loading Video...)
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Review of Galerkin method

Had we know the PDE,

p(X, t) = etﬁ*po(x)’

one can solve this problem with Galerkin method. That is, pick a
basis function ¢j(x) depending on the geometry and represent the
solutions of the PDE as linear combinations of these basis
functions,

p(x,t) = (t)pi(x),
J
then solve the system of ODE's,

a(t) =) {er: e 9))ci(0),

J
under the appropriate inner product.
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Had we know the PDE,

p(X, t) = etﬁ*po(x)’

one can solve this problem with Galerkin method. That is, pick a
basis function ¢j(x) depending on the geometry and represent the
solutions of the PDE as linear combinations of these basis
functions,

p(x,t) = (t)pi(x),
J
then solve the system of ODE's,

a(t) =) {er: e 9))ci(0),

J
under the appropriate inner product.

Problem: We don't have ¢j(x) and we don’t know L*



Diffusion Forecast

» We use the diffusion maps?,3 to generate a data driven basis
function ;. This is a kernel based method!

» We* approximate ™ with a shift operator S, defined as
follows: S;f(x;) = f(xi+1), where tj11 = t1 + 7. In this
coordinate basis, we can approximate

N
T * 1
(oK, ™" Pilozt N (SrPks B))peg B NZSTW(X:')SOJ(X:')
i=1
N
= Z XI+1 ©j XI)

where {x;}.; ~ peq(x) is the training data time series.

2Coifman & Lafon, Appl. Comput. Harmon. Anal., 2006
®Berry & H, Appl. Comput. Harmon. Anal., 2016.
4Berry, Giannakis, and H, Phys. Rev. E 2015.



Application: Forecasting the El Nino Index 3.4

Left: Taken from comment to our paper by Kondrashov, Chekroun, & Ghil Phys. Rev. E, 2016. They published
their modeling approach in PNAS 2011.

Right: Diffusion forecast is trained on only 600 data point (monthly between Jan 1950-Dec 1999. Forecast
verification on Jan 2000-march 2014. Berry, Giannakis, & H Phys. Rev. E 2016.

14-month lead-time forecast skill:
PNF RMSE 0.86, PC 0.52
Diffusion Forecast RMSE 0.77, PC 0.64.
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Application: Modeling missing dynamics

)

Consider forecasting problem,

x = f(x,0),

with unknown time evolving 6 = g(o, W). We assume that besides missing the
dynamics of § € M, we only measure noisy observations at discrete time,

yi = h(x;) +mni, 0 ~N(0,R).

For illustration, we consider coupling L96 with an L63 as follows,

Xi

0
a1
a

as

OXi—1Xit+1 — Xi—1Xi—2 — X; + 8,
(a1/40 +1),

10(a2 — a1)/e,

(28a1 — a2 — a1a3) /e,

(ar1a2 — 8a3/3) /e,

®*Berry & H, J Comput. Phys., 2016.
D



Numerical solutions
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Figure : Comparison of the uncoupled Lorenz-96 (top) model dynamics
with the coupled L96-L63 system (middle) and the coefficient (6/40 + 1)
(bottom).



Extracting training data

Extract training data set for 6 from observations y.

|— Recovere 90 |— Recoveredo

100 150 200 250 00 200 300400 500 600 700 800 800 1000
Time (ime steps, At=0.1) Time (ime steps, 41=0.1)

50

Figure : Comparison the true time series of § and the recovered time
series for € = 0.25 (left), e = 1 (middle), and € = 4 (right).

Here we used the adaptive method® to solve

X

f(x,8)

vV Qo W

®Berry & Sauer, Tellus A 2013




Numerical results
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Figure : Comparison of forecasting methods with recovered training data
and filtered initial condition for € = 0.25 (left), e = 1 (middle), and ¢ = 4
(right).

We consider: standard L96 model, persistence model, fitting MSM
model, HMM (sampling from recovered ), perfect model.
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