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Probabilistic forecasting problem:

Suppose the variables of interest x(t) ∈M ⊂ Rn satisfy,

dx = a(x)dt + b(x) dWt ,

with distribution characterized by a density function p(x , t) that
satisfies a PDE called the Fokker-Planck equation,

∂tp = −∇ · (ap) +
1

2
∇ · ∇ · (bb>p) ≡ L∗p.

Probabilistic forecasting problem:
Given initial distribution p(x , 0) = p0(x), one is interested to find

p(x , t) = etL
∗
p0(x)

and the corresponding statistics,

E[f ](t) ≡
∫
Rn

f (x)p(x , t) dx .

of some function f .
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Probabilistic forecasting problem:

Classical solutions:

I If one knows a(x), b(x),M, BC’s, and IC’s, then solve the
Fokker-Planck equation with appropriate PDE solvers.

I For high dimensional application, apply Monte-Carlo
(ensemble forecasting, see Epstein 1969, Leith 1974), i.e.,
Sample initial conditions xk ∼ p0(x) and solve an ensemble of
initial value problems,

dx = a(x)dt + b(x) dWt ,

x(0) = xk , k = 1, . . . ,K .

Suppose the ensemble solutions at time ti > 0 is denoted by
xki , then one can compute the statistics via Monte-Carlo,

E[f ](ti ) ≡
∫
Rn

f (x)p(x , t) dx ≈ 1

N

N∑
k=1

f (xki )
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Nonparametric forecasting

Problem: Given only a time series of of xi = x(ti ), i = 1, . . . ,N,
solve the Fokker-Planck equation for p(x , t). In other words, L∗,
a(x), b(x), M, and BC’s are all unknown.

Basically, we want to solve a partial differential equation
without knowing the equation!

Assumption: The dynamics are ergodic so M is the attractor of
the system and the sampling measure is the same as the invariant
measure. That is, xi ∼ peq(x), where L∗peq = 0.

Remark: Our approach is nonparametric in the sense that we do
not impose any parametric form in modeling a(x) and b(x).
Surely, the method has parameters.
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Lorenz-63

Lorenz model:

ẋ = σ(y − x), ẏ = x(ρ− z)− y , ż = xy − βz .

(Loading Video...)


lorenz63Forecast.mov
Media File (video/quicktime)



A 2D fast-slow stochastic system in a torus

Learning from a three-dimensional data (x(θ, φ), y(θ, φ), z(θ, φ))
whereas the intrinsic dynamical system is two dimensional (θ, φ).

(Loading Video...)


torusForecast.mov
Media File (video/quicktime)



Review of Galerkin method

Had we know the PDE,

p(x , t) = etL
∗
p0(x),

one can solve this problem with Galerkin method. That is, pick a
basis function ϕj(x) depending on the geometry and represent the
solutions of the PDE as linear combinations of these basis
functions,

p(x , t) =
∑
j

cj(t)ϕj(x),

then solve the system of ODE’s,

ck(t) =
∑
j

〈ϕk , e
tL∗ϕj〉cj(0),

under the appropriate inner product.

Problem: We don’t have ϕj(x) and we don’t know L∗
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Diffusion Forecast

I We use the diffusion maps2,3 to generate a data driven basis
function ϕj . This is a kernel based method!

I We4 approximate eτL with a shift operator Sτ defined as
follows: Sτ f (xi ) = f (xi+1), where ti+1 = t1 + τ . In this
coordinate basis, we can approximate

〈ϕk , e
τL∗ϕj〉p−1

eq
≈ 〈Sτϕk , ϕj〉peq ≈

1

N

N∑
i=1

Sτϕk(xi )ϕj(xi )

=
1

N

N∑
i=1

ϕk(xi+1)ϕj(xi ),

where {xi}Ni=1 ∼ peq(x) is the training data time series.

2Coifman & Lafon, Appl. Comput. Harmon. Anal., 2006
3Berry & H, Appl. Comput. Harmon. Anal., 2016.
4Berry, Giannakis, and H, Phys. Rev. E 2015.



Application: Forecasting the El Nino Index 3.4
Left: Taken from comment to our paper by Kondrashov, Chekroun, & Ghil Phys. Rev. E, 2016. They published
their modeling approach in PNAS 2011.

Right: Diffusion forecast is trained on only 600 data point (monthly between Jan 1950-Dec 1999. Forecast
verification on Jan 2000-march 2014. Berry, Giannakis, & H Phys. Rev. E 2016.

14-month lead-time forecast skill:
PNF RMSE 0.86, PC 0.52
Diffusion Forecast RMSE 0.77, PC 0.64.

Forecast Steps (months)
2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 R

M
S

E

0.5

1

1.5
Actual Error
Estimated Error
Climatological Error

Forecast Steps (months)
2 4 6 8 10 12 14 16

C
o

rr
e

la
ti
o

n

0

0.5

1

Year

2001 2003 2005 2007 2009 2011 2013

E
l 
N

in
o
 3

.4
 I
n
d
e
x

-1

0

1

2

Truth

14 Month Forecast

Forecast Std. Dev.



Application: Modeling missing dynamics 5

Consider forecasting problem,

ẋ = f (x , θ),

with unknown time evolving θ̇ = g(θ, Ẇ ). We assume that besides missing the
dynamics of θ ∈M, we only measure noisy observations at discrete time,

yi = h(xi ) + ηi , ηi ∼ N (0,R).

For illustration, we consider coupling L96 with an L63 as follows,

ẋi = θxi−1xi+1 − xi−1xi−2 − xi + 8,

θ = (a1/40 + 1),

ȧ1 = 10(a2 − a1)/ε,

ȧ2 = (28a1 − a2 − a1a3)/ε,

ȧ3 = (a1a2 − 8a3/3)/ε,

5Berry & H, J Comput. Phys., 2016.



Numerical solutions
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Figure : Comparison of the uncoupled Lorenz-96 (top) model dynamics
with the coupled L96-L63 system (middle) and the coefficient (θ/40 + 1)
(bottom).



Extracting training data

Extract training data set for θ from observations y .
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Figure : Comparison the true time series of θ and the recovered time
series for ε = 0.25 (left), ε = 1 (middle), and ε = 4 (right).

Here we used the adaptive method6 to solve

ẋ = f (x , θ)

θ̇ =
√

QθθẆ

6Berry & Sauer, Tellus A 2013



Numerical results
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Figure : Comparison of forecasting methods with recovered training data
and filtered initial condition for ε = 0.25 (left), ε = 1 (middle), and ε = 4
(right).

We consider: standard L96 model, persistence model, fitting MSM
model, HMM (sampling from recovered θ), perfect model.
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