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Carbon	cycle	science:		What’s	the	big	
deal?



IPCC, WG1, AR4

Ten-thousand year view



• Terrestrial	 (and	marine)	
systems	are	removing	a	lot	
of	CO2!	

• The	terrestrial	 sink	is	
increasing	with	time

• The	terrestrial	 sink	has	
large	interannual variability,	
likely	related	 to	climate	
variability.

• Where	is	this	happening?	
Why	is	this	happening?

(Global	data	– atmospheric	
sampling.)

Source:		http://www.aip.org/pt/vol-55/iss-8/captions/p30cap2.html
Sarmiento	and	Gruber,	Physics	Today,	2003

Terrestrial ecosystems are removing large 
quantities of CO2 from the atmosphere.

Sarmiento and Gruber, 2002



IPCC, WG1, AR5

Energy stats

Atmospheric CO2
measurements

Ocean and atmospheric 
data

Land use records
Residual terrestrial sink

1. Fossil	 fuel	burning	 is	a		
huge	CO2 source.		Must	
be	managed.

2. There	 is	a	large	
terrestrial	biosphere	
sink	that	 is	poorly	
understood	and	highly	
variable.



Recent years:  Methane concentrations are “on the rise again”

Euan G. Nisbet et al. Science 2014;343:493-495

Published by AAAS

“Pause”	in	early	2000’s	is	not	fully	
understood,	nor	is	the	current	
increase.	 	Tropical	wetlands	probably	
play	the	major	role	in	the	current	
increase,	but	fossil	 fuel	activity	may	
also	contribute.



IPCC, WG1, AR5, Fig 6.2

Global methane budget (Tg CH4) About 1/2 of 
methane sources 
are associated with 
human activity.

Large uncertainty 
in all sources.

Recent trends 
cannot be 
explained.



Example:	Uncertainty	in	CH4 emissions	from	the	
production	of	natural	gas	is	large

• Changes	in	estimated	methane	leakage	as	a	percentage	of	
production	(USEPA	2010,	2011,	2013)	are	dominated	by	
changing	estimates	of	leakage	during	production	(other	
sectors	may	also	be	uncertain	– just	not	revised	in	these	
reports).



Diagnoses	of	current	carbon	
sources/sinks	are	not	very	accurate.

(at	“regional”	spatial	scales)

and	“we	can’t	manage	what	we	can’t	measure.”



Methods

Flux of carbon across this plane
=  tower or aircraft flux approach

-

Change in
biomass
over time = 
inventory approach

Change in atmospheric concentration of CO2 over
time = inversion or ABL budget approach.

Change in CO2 concentration in a small
box over time = chamber flux approach



Flux 
towers

Atmospheric 
CO2

Surface 
radiances

Davis, 2008

The gap



Method – eddy covariance

 

Flux of C across this 
plane 
 
       + 
 
Rate of 
accumulation of C 
below the flux sensor 
 
       = 
 
Net Ecosystem-
Atmosphere 
Exchange (NEE) of C 

Net sideways 
transport = 0 



Sonic anemometer

Infrared gas analyzer

Campbell Scientific, Inc.
LI-COR, Inc.



Net ecosystem-atmosphere 
exchange of CO2 in northern 

Wisconsin

Weak carbon source Davis	et	al,	2003



Global flux tower co-op:  Hundreds of sites

!  Beware of closed data policies !



A CO2 flux map for N. America

Annual NEE in gC m-2 yr-1, 2002

VPRM fitted 
to 65 N. 
American flux 
towers using 
differential 
evolution.

Extrapolate 
using T, PAR, 
EVI, PFTs.

Hilton et al, 2014, Biogeosciences



Annual NEE error map, 2002

Units are gC 
m-2 yr-1.

Hilton et al, 2014, Biogeosciences

Uncertainties 
are about as 
large as the 
fluxes.



Interannual CO2 flux	variations	are	very	
difficult	to	simulate	(and	measure?)

variability. The significant underestimation by the LUE

models likely reflects the highly empirical nature of these

models that are driven predominantly by radiation and

LAI, and are less capable of capturing the temperature

and soil moisture stresses that influence year-to-year

changes in flux magnitude. For soil carbon decomposi-

tion formulation, the nitrogen inclusive models showed

consistently higher annual variability as compared to the

no-nitrogen models (Appendix A: Table A13).

In summary, all models showed a tendency to

underestimate the magnitude of interannual variability

for NEE, GPP, and RE. This tendency was reinforced in

FIG. 4. Annual fluxes for all sites for (a) NEE, (b) GPP, and (c) RE. The statistics of correlation coefficient (black dotted-
dashed axis lines), average difference in flux magnitude between the modeled and observed fluxes (RMSD; gray dashed axis lines),
and standard deviation (gray dotted axis lines) are calculated from temporal (within-site) modeled variability. Squares represent
light-use-efficiency models, X’s represent enzyme-kinetic models, and dots represent statistical models (observed and model mean).
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North	American	model	– flux	tower	comparison. Raczka et	al.,	(2013)



Across-model	 standard	
deviation	 in	long-term	mean	
(2000–2005)	summer	(June,	
July,	August)	terrestrial	
biosphere	model	estimates	 of	
net	ecosystem	productivity.

Huntzinger et	al.	(2012)

“The	range	in	model	estimates	
of	net	ecosystem	productivity	
(NEP)	for	North	America	 is	
much	narrower	than	estimates	
of	productivity	or	respiration,	
with	estimates	 of	NEP	varying	
between	 −0.7	and	2.2	PgC yr−1,	
while	gross	primary	productivity	
and	heterotrophic	respiration	
vary	between	12.2	and	32.9	PgC
yr−1	and	5.6	and	13.2	PgC yr−1,	
respectively.”

Eastern	U.S.	has	
the	 largest	
uncertainty	 in	
ecosystem	CO2
flux.

Huge	range	in	modeled	 CO2 fluxes.

Regional	CO2 fluxes	are	highly	uncertain.



Why	is	it	so	difficult	to	simulate	
ecosystem-atmosphere	carbon	fluxes?	



Why	is	it	so	difficult	to	simulate	
ecosystem-atmosphere	carbon	fluxes?

Ecosystem	processes	are	complex	and	governing	equations	
are	highly	parameterized.

The	land	surface	is	heterogeneous	down	to	very	small	spatial	
resolution.



Atmospheric	inversions	have	the	
potential	to	close	this	gap

• Measure	CO2 at	point	A
• Follow	air	flow	to	point	B
• Measure	CO2 at	point	B
• Infer	sources	and	sinks	of	CO2 in	between	A	
and	B.

• Requires	dense,	high-quality	atmospheric	
data,	and	accurate	atmospheric	transport.



Inverse Modeling of CO2

Air	Parcel Air	Parcel

Air	Parcel

Sources Sinks

wind wind

Sample
Sample

Changes in CO2 and CH4 in the air 
tell us about sources and sinks

“Atmospheric inversion”



Global atmospheric CO2 measurement network: 200(?) sites

Old figure…more sites today…and OCO-2



Results from atmospheric inversions:  
North American terrestrial ecosystem fluxes

This shows 
that there is a 
significant N. 
American 
terrestrial 
sink.

We more or 
less knew that 
in 1990.

Butler	and	Davis,	AGU	2014



Three	primary	sources	of	uncertainty	
in	GHG	inverse	flux	estimates

1. Limited	atmospheric	data	CO2 and	CH4 data	
density

2. Uncertain	CO2 and	CH4 prior	flux	estimates
3. Poor	knowledge	of	atmospheric	transport	–

uncertainties	largely	unknown



Predicting future carbon fluxes
• C4MIP:  comparison of 10 coupled climate/carbon models
• Large range of uncertainty (16 GtC yr-1 range in land flux by 2100) in 
the “natural” sinks buffering climate change.  Management challenge!

Friedlingstein et al., (2006)



Friedlingstein et al., 2014

CMIP5 results

Predicting future carbon fluxes
(an update)

Observations	needed	to	evaluate	and	improve	these	models	are	
lacking.



What	can	be	done?
• Advance	process	understanding.
• Move	towards	multi-state	data	assimilation.
• Close	the	measurement	methods	gap.
• Apply	more	measurements	to	more	models.		Enter	
the	era	of	networked	observations	and	ensemble	
modeling.



Some	examples
• The	world	isn’t	flat!		

• Improve	models	by	studying	the	carbon-water-
nitrogen	cycles	in	complex	terrain.	

• Closing	the	measurement	gap	with	atmospheric	
inversions:
• Increase	measurement	density.
• Reduce	uncertainty	in	atmospheric	transport.
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• Move	towards	multi-state	data	assimilation.
• Close	the	measurement	methods	gap.
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modeling.
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Note:	No	observed	SMN

N determines	 the
spatial pattern of
aboveground biomass,	
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Assimilated	 data:	
Watershed	 average	
soil	carbon	and	
aboveground	carbon	
turnover	rate.



What	can	be	done?
• Advance	process	understanding.
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Some	examples
• The	world	isn’t	flat!		

• Improve	models	by	studying	the	carbon-water-
nitrogen	cycles	in	complex	terrain.	

• Closing	the	measurement	gap	with	atmospheric	
inversions:
• Increase	measurement	density.
• Reduce	uncertainty	in	atmospheric	transport.



Midcontinent 
intensive, 2007-2009

Gulf coast 
intensive, 
2015-2016

Marcellus 
regional 
intensive, 
2015-2016

INFLUX, 
2010-present

Regional GHG measurement campaigns



Corn-dominated	 sites

MidContinent Regional	Intensive	Tower-Based	
CO2 Observational	Network

Miles et al, 2012, JGR-B



• Large	differences	 in	seasonal	 drawdown,	despite	
nearness	 of	stations.	

• 2	groups:	33-39	ppm	drawdown	and	24	– 29	ppm	
drawdown.	 	Tied	to	density	of	corn.

Mauna	Loa

Miles et al, 2012, JGR-B

MCI 31 day running mean daily daytime average CO2
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Atmospheric inversions and agricultural inventory agree.
Regional inversions and inventory have similar uncertainty 
bounds!
Atmospheric inversions have great potential for carbon balance 
inference given suitable data density.

Regional CO2 Sink estimates



Cross-over	point?		Inversion	vs.	inventory
Atmospheric	 inversions	
provide	great	insights	 at	
global	scale.	 	Emissions	
inventories	are	very	
informative	at	small	scales.	 	
Can	we	bridge	the	gap?

Midcontinent	Intensive	study	area

Ogle	et	al,	2015,	ERL

Schuh et	al,	2013 MCI	results	suggest	 that	uncertainty	 in	
an	atmospheric	 inversion	equals	 the	
uncertainty	 in	an	agricultural	 inventory	
at	(several	100	km)2 resolution	 for	this	
inventory	and	these	atmospheric	 data	



• Communications 
towers ~100 m AGL

• Picarro, CRDS 
sensors

• 12 measuring CO2, 
11 with CH4, and 5 
with CO

• 6 NOAA automated 
flask samplers

• NOAA LIDAR
• Eddy flux at 4 towers

INFLUX GROUND-BASED NETWORK
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• Afternoon	daily	
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• Significant	overlap	
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(weather-driven	
variability)

Miles et al, in prep
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Miles et al, in prep
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• Observed CO2:  
afternoon values, 
averaged Jan-April 
2013

• Site 09:  0.3 ppm 
larger than Site 01

• Site 03: measures 
larger [CO2] by 3 
ppm

Spatial structure of urban CO2: observed

Miles et al, in prep



Modeled CO2 mixing ratios

X

Combination of tower surface footprints with prior CO2 emissions to generate 
modeled mixing ratios

Lauvaux	et	al,	submitted



Spatial structure of urban CO2: observed and modeled

• Observed CO2:  
afternoon values, 
averaged Jan-April 
2013

• Site 09:  0.3 ppm 
larger than Site 01

• Site 03: measures 
larger [CO2] by 3 
ppm

• Modeled CO2 using 
LPDM footprints 
and Hestia 
emissions

• Overall, the spatial 
structure is similar 

• Miles et al., in 
prep

(observed CO2 enhancement, tower number)

Blue = observed; Green = modeled



Indianapolis whole-city emissions

Sept12 – Apr13 Indianapolis 
CO2 emissions:

Hestia: 4.6 ktC

Inversion: 5.7 ktC +/- 0.2 ktC

Lauvaux	et	al,	submitted



What	can	be	done?
• Advance	process	understanding.
• Move	towards	multi-state	data	assimilation.
• Close	the	measurement	methods	gap.
• Apply	more	measurements	to	more	models.		Enter	
the	era	of	networked	observations	and	ensemble	
modeling.



Some	examples
• The	world	isn’t	flat!		

• Improve	models	by	studying	the	carbon-water-
nitrogen	cycles	in	complex	terrain.	

• Closing	the	measurement	gap	with	atmospheric	
inversions:
• Increase	measurement	density.
• Reduce	uncertainty	in	atmospheric	transport.



Comparison	– TM5	and	WRF
How	much	does	transport	matter?

Diaz-Isaac	et	al,	2014,	JGR-A.

Identical	CO2 fluxes	and	boundary	conditions.

Midsummer,	monthly	averaged	ABL	CO2 differs	 by	as	much	as	15	ppm	due	only	to	
atmospheric	 transport.



• Model-Ensemble	mean	comparison	used	to	isolate	transport	errors.
• Local	Scale:	LSMs,	PBL	schemes	 and	Cumulus	 parameterizations	 (CP)	

all	have	a	big	impact	 in	CO2 mole	fraction	errors.
• Regional	scale: LSMs,	PBL	schemes,	 Cumulus	 parameterization(CP)	

and	reanalysis	have	a	big	impact	 in	CO2	errors.
• PBL	physics	is	not	the	only	physics	parameterization	that	matters. 51

Which	Physics	Parameterization	Drives	
CO2 Errors?

Regional	[CO2]	RMSD	

Sites:	blue	
triangles

Diaz-Isaac	et	al,	in	
prep



How	much	do	CO2 simulations	vary	
within	this	ensemble?

Multi-physics	ensemble	of	
WRF,	vertical	CO2 profiles	
in	Iowa.		
Diaz	Isaac,	in	prep

All	members	 of	the	
ensemble	 yield	
plausible	
atmospheric	
transport	
(comparison	to	
winds,	ABL	depth,	
surface	flux	
observations).

All	physics	
parameterizations	
contribute	
significantly.

Diaz-Isaac,	in	
prep	



Eastern	region	site-to-site	
daytime	ABL	CO2
contributions	from	
continental	biogenic	fluxes.		
August,	2008.	WRF,	Carbon	
Tracker	boundaries.

Eastern	region	site-to-site	
daytime	ABL	total	CO2
differences	between	two	
transport	realizations.		
August,	2008.	WRF,	Carbon	
Tracker	boundaries.

How	large	are	transport	differences	compared	to	flux	contributions?
About	50%	of	the	continental	biological	CO2 signal

Normile,
In	prep



OK,	transport	matters.		So	what	do	we	do	
about	this?



Wind	Speed	 Wind	Direction PBL	Height

55

• Regional	wind	speed	ME	
is	positive	for	all	the	
configurations	except	
one.

• Generally	one	PBL	
scheme	 (i.e.,	YSU) shows	
a	higher	ME	than	the	
rest.

• Regional	wind	direction	
mean	error	is	highly	
variable	across	the	
different	model	
configurations.

• Regional	 PBL	height	ME	is	
highly	variable	across	the	
different	model	
configurations.

• Generally	one	PBL	scheme	
(i.e.,	YSU)	and	LSM	(i.e.,	
RUC)	shows	a	higher	ME.

Are	the	models	biased?		Examination	of	a	45-
member	WRF	parameterization	ensemble

Diaz-Isaac	et	al,	in	prep



Atmospheric	Carbon	and	Transport	–
America

A	new	NASA	Earth	Venture	mission	dedicated	to	improving	
the	accuracy,	precision	and	resolution	of	atmospheric	
inverse	estimates	of	CO2 and	CH4 sources	and	sinks

Kenneth	Davis1,	David	Baker2,	 John	Barrick3,	 Joseph	Berry4,	 Kevin	Bowman5,	
Edward	Browell3,	 Lori	Bruhwiler6,	 Gao Chen3,	George	Collatz7,	Robert	Cook8,	Scott	
Denning2,	 Jeremy	Dobler9,	Syed	Ismail3,	Andrew	Jacobson6,	Anna	Karion6,	Thomas	
Lauvaux5,	Bing	Lin3,	Matt	McGill7,	Byron	Meadows3,	 Anna	Michalak4,	Natasha	

Miles1,	 John	Miller6,	Berrien	Moore10,	Amin	Nehrir3,	 Lesley	Ott7,	Michael	Obland3,	
Christopher	 O’Dell2,	 Stephen	Pawson7,	Gabrielle	Petron6,	Andrew	Schuh2,	Colm

Sweeney6,	Pieter	Tans6,	Yaxing Wei8,	and	Melissa	Yang3

1The	Pennsylvania	State	University,	 2Colorado	State	University,	 3NASA	Langley	
Research	 Center,	 4Carnegie	 Institution	of	Stanford,	 5NASA	Jet	Propulsion	Lab,	
6NOAA	ESRL/University	 of	Colorado,	 7NASA	Goddard	Space	Flight	Center,	 8Oak	

Ridge	National	Lab,	9Exelis,	 Inc.,	10University	 of	Oklahoma



ACT-America

Image	credit:	Tim	Marvel	/	NASA	Langleyhttp://act-america.larc.nasa.gov/



ACT-America	Mission	Objectives
1. Quantify	and	reduce	atmospheric	transport	

uncertainties
2. Improve	regional-scale,	seasonal	prior	estimates	of	

CO2 and	CH4 fluxes
3. Evaluate	the	sensitivity	of	Orbiting	Carbon	

Observatory-2	(OCO-2)	column	CO2 measurements	to	
regional	variability	in	tropospheric	CO2

These	goals	address	the	three	primary	sources	of	
uncertainty	in	atmospheric	inversions	– transport	error,	
prior	flux	uncertainty	and	limited	data	density



Imagine	air	flowing	across	a	landscape	
that	is	a	source	of	GHGs,	and	aircraft	data	
tracking	the	changes	in	GHG	mole	fraction	

across	the	landscape…



Simplified	vision	of	model	(flux	and	transport)	
ensemble	pruning	using	airborne	observations
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Distance downwind within a source/sink region

Background
mole fraction
(tower network) Flight domain

Elevation of 
mole fraction 
above 
continental 
background

Mean wind

= airborne mole fraction 
observations

Pruned flux and transport ensemble members

Retained flux and transport ensemble members

Pruned	ensembles	lead	to	more	accurate	and	precise	flux	inversions	using	long-term	
GHG	data	(towers,	flasks,	satellite,	NOAA	airborne	profiling.



Where?

The	eastern	half	of	the	United	States,	a	region	that	includes	 a	highly	productive	biosphere,	
vigorous	agricultural	activity,	extensive	 gas	and	oil	extraction,	 dynamic,	seasonally	 varying	
weather	patterns	and	the	most	extensive	GHG	and	meteorological	 observing	networks	on	
Earth,	serves	as	an	ideal	setting	 for	the	ACT-America	mission.	



Stormy-weather	(transport-
dominated)	flight	plans	(objective	1)

• Measure	atmospheric	 state,	CO2, CH4 and	tracers	(CO,	14CO2, O3)	across	and	around	
frontal	systems.

• Evaluate	atmospheric	 transport	in	our	model	ensemble.	 	Prune	transport	ensemble.



Fair-weather	(flux-dominated)	flight	
plan	(objectives	1	and	2)

• Measure	winds,	ABL	depth,	CO2, CH4 and	tracers	(CO,	14CO2,O3)	across	100’s	of	km.
• Solve	for	regional	 fluxes	for	the	days	of	flights	directly	– prune	prior	flux	estimates.
• Evaluate	fair	weather	meteorology	 in	atmospheric	 transport	ensemble

Tim	Marvel,	NASA	Langley



OCO-2	under-flights	(objective	3)
Tim	Marvel,	NASA	Langley

• Measure	much	of	the	atmospheric	 CO2 column	at	<	20km	horizontal	resolution	 across	
100’s	of	km	below	OCO-2.	Also	measure	 aerosols,	clouds	with	lidar.

• Compare	spatial	variability	 in	airborne	CO2 to	OCO-2	CO2.		Evaluate	OCO-2	ability	to	
capture	tropospheric	 CO2 variability	along-track.



Flight	Campaign	Schedules
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First choice
C-130
test
flights

X X	 X X	 X	

Fallback option	
1

C-130
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X X X	 X X	

Fallback option	
2

C-130
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X X X	 X X	

Fallback option	
3

C-130
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flights

X X X X X

Proposed	start	date:		Summer	2016,	given	timeline	for	C-130	modifications	and	aircraft	access	
for	flight	testing.
Year	1	(2015):	Instrument	aircraft,	integrate	modeling	 systems,	perform	flight	design	
simulations.	 	Work	with	pre-existing	aircraft	data	sets.
Years	2-4	(2016-18):		Flight	campaigns	and	analyses.	 	Goals	1-3.
Year	5	(2019):		Wrap	up	goals	1-3.		Apply	findings	to	a	multi-year	reanalysis	 of	N.	American	C	
fluxes	 using	long-term	 observational	assets	 (i.e.,	demonstrate	 new	atmospheric	 inversion	
system).
End	date:	20	Jan,	2020.



Overarching	Goal
• The	overarching	goal	of	the	Atmospheric	Carbon	and	
Transport-America	(ACT-America)	mission	is	to	improve	
regional	to	continental	scale	diagnoses	of	carbon	
dioxide	(CO2)	and	methane	(CH4)	sources	and	sinks.

• The	mission	will	enable	and	demonstrate	a	new	
generation	of	atmospheric	inversion	systems	for	
quantifying	atmospheric	CO2 and	CH4 fluxes.	

• These	inverse	flux	estimates	will	be	able	to:	
– Evaluate	and	improve	terrestrial	carbon	cycle	models,	and	
– Monitor	carbon	fluxes	to	support	climate-change	mitigation	
efforts.



conclusions

• Carbon	cycle	science	is	in	its	early	stages	as	a	
predictive,	data-rich	science.

• Basic	process	understanding	needs	to	be	
improved.

• Multi-state	observations	and	ensemble	
modeling	is	being	introduced.

• Time	is	short.		The	time	for	management	is	
now.



Thanks!


