Predicting the Evolution of Hurricane Risk with Climate Change

Kerry Emanuel Lorenz Center

Department of Earth, Atmospheric, and Planetary Sciences, MIT

Hurricane Risks Average of 10,000 deaths per year globally

Storm Surge

Tropical Cyclone Climatology

Tropical Cyclones, 1945–2006

Saffir-Simpson Hurricane Scale:

tropical
depressiontropical
stormhurricane
category 1hurricane
category 2hurricane
category 3hurricane
category 4hurricane
category 5

Basic Theory: Implications for Hurricane and Climate Change

Energy Production

See, e.g., Emanuel, K., 2006: Hurricanes: Tempests in a greenhouse. Physics Today, 59, 74-75

Theoretical Steady-State Maximum Hurricane Wind Speed:

Annual Maximum Potential Intensity (m/s)

Trends in Thermodynamic Potential for Hurricanes, 1980-2010 (NCAR/NCEP Reanalysis)

ms⁻¹decade⁻¹

Projected Trend, 2006-2100: GFDL model RCP 8.5

Time series of the latitudes at which tropical cyclones reach maximum intensity.

From Kossin et al., *Nature*, (2014)

Projections of Future Hurricane Risk

Problems with direct numerical simulation of tropical cyclones globally

Histograms of Tropical Cyclone Intensity as Simulated by a Global Model with 30 mile grid point spacing.

Global models do not simulate the storms that cause destruction

(Courtesy Isaac Held, GFDL)

Our Approach:

Embed highly detailed computational hurricane models in large-scale conditions produced by climate analyses or climate models. Generate 1000-100,000 events

Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. *Bull. Amer. Meteor. Soc.*, **89**, 347-367

40E60E80E100E120E140E160E180E160W40W20W00W80W60W40W20W 0E 20E

Sample Storm Wind Swath

Accumulated Rainfall (mm)

Storm Surge Simulation (Ning Lin)

A Grey Swan: Dubai

Max Surge (NCEP track237; Dubai: 3.45 m)

Lin, N. and K. Emanuel, 2015: Grey swan tropical cyclones. *Nature Clim. Change*, doi: 10.1038/NCLIMATE2777

Return Periods

Projections of Global TC Power Dissipation using 6 CMIP5 Climate Models

Emanuel, K.A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. *Proc. Nat. Acad. Sci.*, **110**, doi/10.1073/pnas.1301293110

Eccene hurricane making landfall in the Yukon

Surge Return Periods for The Battery, New York

Lin, N., K. A. Emanuel, J. A. Smith, and E. Vanmarcke, 2010: Risk assessment of hurricane storm surge for New York City. *J. Geophys. Res.*, **115**, D18121, doi:10.1029/2009JD013630

GCM flood height return level, Battery, Manhattan

(assuming SLR of 1 m for the future climate)

Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. *Nature Clim. Change*, doi:10.1038/nclimate1389

TC Intensity Forecast Nightmares

Summary

- The weight of existing evidence supports the conclusion that unmitigated climate warming presents significant risk to future generations
- Scientific uncertainty about the nature and magnitude of climate change entails a low but not tiny risk of catastrophic outcomes
- Among the myriad risks posed by climate change are changes in extreme events, including hurricanes
- There is now a strong consensus that the frequency of high category events should rise, producing a greater number of storms (like Haiyan) that exceed empirical tolerance levels

There is also a strong consensus that tropical cyclone rainfall and associated flood hazards will increase with temperature

Increased high category events coupled with sea level indicate a strong risk of increased storm surge hazard