The atmosphere of Mars:

Insights on weather and predictability from ensemble data assimilation of spacecraft observations

Dr. Steven J. Greybush
The Pennsylvania State University
Assistant Professor of Meteorology
Department of Meteorology and Atmospheric Science
Associate Director, Center for Advanced Data Assimilation and Predictability Techniques
Fellow of the Institute for CyberScience

7th EnKF Workshop
Symposium on Advanced Assimilation and Uncertainty Quantification in BigData Research for Weather, Climate and Earth System Monitoring and Prediction
Tuesday 24 May 2016
Outline

• Basics of the weather and climate of Mars

• Creating a Mars Reanalysis
 • Observations, Model, Assimilation System
 • Refinements and Evaluation

• Exploring Science Questions
 • Instabilities and Predictability
 • Traveling Waves
 • Dust Storms and Water Ice Clouds
Comparing the Earth and Mars

<table>
<thead>
<tr>
<th>Variable</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>6378 km</td>
<td>3396 km</td>
</tr>
<tr>
<td>Gravity</td>
<td>9.81 m s(^{-2})</td>
<td>3.72 m s(^{-2})</td>
</tr>
<tr>
<td>Solar Day</td>
<td>24 hours</td>
<td>24 hours 39 minutes</td>
</tr>
<tr>
<td>Year</td>
<td>365.24 earth days</td>
<td>686.98 earth days</td>
</tr>
<tr>
<td>Obliquity (Axial Tilt)</td>
<td>23.5 deg</td>
<td>25 deg</td>
</tr>
<tr>
<td>Primary Atmospheric Constituent</td>
<td>Nitrogen and Oxygen</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>Surface Pressure</td>
<td>101,300 Pa</td>
<td>600 Pa</td>
</tr>
<tr>
<td>Deformation Radius</td>
<td>1100 km</td>
<td>920 km</td>
</tr>
<tr>
<td>Surface Temperature</td>
<td>230-315 K</td>
<td>140-300 K</td>
</tr>
</tbody>
</table>
Spacecraft Exploration of Mars

- Mars Global Surveyor: TES, MOC, MOLA...
- Mars Odyssey: Imaging and Spectrometry
- Mars Reconnaissance Orbiter: MCS, MARCI...

Mariner Program: Observed Dust Storms

Viking Lander: Surface Pressure Time Series

Mars Pathfinder: Surface Weather

Mars Exploration Rovers: Dust Devils

Mars Science Laboratory (MSL)
- Curiosity rover
- Rover Environmental Monitoring Station (REMS) – Air and Ground Temperature, Winds, Surface Pressure, Relative Humidity, UV Radiation

Mars Phoenix Lander: Precipitation, Water Ice

Images Courtesy of Wikipedia
Martian Topography

Hellas Basin

Vastitas Borealis

Olympus Mons

Valles Marineris

Argyre Basin

~5 km
Hemispheric Dichotomy in Elevation
Features of Martian Weather

- Traveling Weather Systems
- Thermal Tides
- Water Ice Clouds
- Precipitation ("snowfall" detected aloft)
- Surface Frosts, Fogs
- Polar Caps – Water and CO₂ Ice
- Dust Devils
- Regional and Global Dust Storms
The Dust Storm Enigma

Whereas local dust storms occur every year, planet-encircling global dust storms occur irregularly every 2-3 Martian years.

The modeling of dust storms and their inter-annual variability remains a challenge for the Mars weather and climate community.
Creating a Mars Reanalysis

- Spacecraft Observations
- Mars Global Circulation Model
- Data Assimilation Techniques
- Performance Evaluation and Validation
TES (Thermal Emission Spectrometer)

Thermal Emission Spectrometer (TES)
- Nadir sounder.
- Temperature retrievals at 19 vertical levels up to 40 km; column dust opacity.
- Observation error estimated at 3 K; characteristics not well known.

Characteristics
- Observation errors have both random and systematic components, and include instrument error and errors of representativeness.

MCS (Mars Climate Sounder)

Mars Climate Sounder (MCS)
- Observations from 2006-present.
- Limb sounder.
- Temperature, dust, and water ice retrievals at 105 vertical levels up to 80 km.
- Random error < 1 K at elevations below 50 km; estimated systematic error of 1-3 K.

Observation errors
- Observation errors have both random and systematic components, and include instrument error and errors of representativeness.

<table>
<thead>
<tr>
<th>Latitude (deg)</th>
<th>Longitude (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>20</td>
<td>360</td>
</tr>
</tbody>
</table>

Pressure (Pa)

<table>
<thead>
<tr>
<th>Latitude (deg)</th>
<th>Pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>

Sample locations of TES profiles during 6-hour interval.
GFDL Mars Global Circulation Model (MGCM)

Developed by R. John Wilson, NOAA GFDL

- Finite volume dynamical core
- Latitude-longitude grid
- 60 x 36 grid points (6° x 5.29° resolution)
- 28 vertical levels
- Hybrid \(p / \sigma \) vertical coordinate
- Gaseous and condensed \(\text{CO}_2 \) cycle
- Shortwave and IR radiative transfer with the option for dust radiative feedback
- Soil model, boundary layer scheme, water budget, gravity wave drag, ice cloud microphysics
- Tracers for dust, water vapor, and water ice
- Dust lifting and sedimentation
Martian Diurnal Cycle

- The **thermal tide** can be tracked as the tongue of warm temperatures centered around the subsolar point as it moves across the planet over the course of a day.

- **Diurnal temperature changes** in the summer hemisphere can approach 100 K.

Plotted: MGCM near-surface temperature field at NH Winter Solstice in 0.25 sol intervals.

Contours are topography.
Martian Seasonal Cycle

Adiabatic Warming from Global Hadley Cell Descent

NH Winter Solstice
Zonal Mean Temperature

NH Spring Equinox
Zonal Mean Temperature

Westerly Jets

NH Spring Equinox
Zonal Mean U-Wind

NH Winter Solstice
Zonal Mean U-Wind
Assimilation: Optimally Combining Observations with a Model

Thermal Emission Spectrometer or Mars Climate Sounder Temperature Profiles

MGCM - MGCM - MGCM

Mars Global Circulation Model

LETKF

Local Ensemble Transform Kalman Filter

TES or MCS

MGCM - MGCM - MGCM

Forecast Ensemble

Analysis Ensemble

Time

+0 hours

+1 hour

Update: Temperature, U and V Wind, Surface Pressure
Improving Assimilation Performance

- Freely Running Model
- Initial Assimilation
- Adaptive Inflation
 \((Miyoshi\ 2011)\)
- Varying Dust Distribution
- Empirical Bias Correction
 \((Danforth\ et\ al.,\ 2007)\)

Evaluated by comparing 0.25 sol forecasts with observations.
Improving Assimilation Performance

- Freely Running Model
- Initial Assimilation
- Adaptive Inflation
- Varying Dust Distribution
- Empirical Bias Correction
- Localization Tuning
- CO2 Mass Conservation
- Assimilation Window Length

Ongoing Development:

Hybrid EnKF/Var Data Assimilation
(Grad Student Matthew Wespetal)

New methods for assimilating retrievals: transforming observations to remove the prior and vertical error correlations, enabling interactive retrievals
(Collaborator Ross Hoffman, AER)

Evaluated by comparing 0.25 sol forecasts with observations.
NH Autumn Ls 185-203

Bias

Random Error
Reanalysis forced by TES Dust Opacities

Horizontal and vertical dust distribution determined by MGCM advection of tracers. Dust injected/removed from boundary layer to match observations.

Ensemble varies strength of water ice clouds.

With model improvements and use of observed dust information, biases are generally reduced.
Reduction in bias will occur with improved MGCM parameterizations, as well as by improving the dust and water ice distributions through formal assimilation of observation information and parameter estimation.
Resonance induced to Semi-Diurnal Tide by 6-hr Data Assimilation Windows

Wave 4 spatial pattern of observation increments modulates semi-diurnal tidal modes through constructive interference. (On Mars, topography also modulates the tides.)

Solution:
Use shorter assimilation window (1 or 2 hours)

50Pa temp semi-diurnal tide wave 2 amplitude Ls 98.6-101.8 ave
Evaluating the Reanalysis

• Comparisons with freely running forecasts.
• RMSE and bias of short term forecasts initiated from ensemble analyses.
• Comparisons to other reanalyses.
• Comparisons to independent Radio Science temperature profiles and rover data.
• Feature-based evaluation: traveling waves, tides, aerosols.
Reanalysis Intercomparison

- Zonal mean statistics of temperature differences between the analyses reveal a general agreement of the analyses.
- Larger disagreements exist at cap edge baroclinic zones, as well as in upper levels above TES coverage, which is due to bias from model differences.
- Reanalysis also compare favorably to independent Radio Science profiles.
Mars Atmosphere Science Questions
Assessing Predictability through Numerical Weather Prediction

Example from NH Autumn, MY 24
Forecast Initiated from Ls=192°

- Free Run
- Forecast starting from Reanalysis
- Reanalysis
- Observation Error
Assessing Predictability through Numerical Weather Prediction

Example from NH Autumn, MY 24
Forecast Initiated from Ls=192°

- What factors control the evolution of forecast error?
- How does forecast error vary by region and season?
Fig. 1. Performance of the MGCM-LETKF during NH summer (~Ls 100), evaluated by comparing RMS differences of forecasts with TES observations, without and with ice cloud parameterization, and with various assimilation window lengths. Error bar with one standard deviation for each experimental run is also included. (From Zhao et al., 2015)
Sources of Forecasting Error

• Dynamical Instabilities / Chaos

Small differences in initial conditions between two similar states grow until the error saturates and they are no different than two random states from climatology.

• Model Error / Forcing

Model errors have both random and systematic components.

In a forced system, spread decreases over time as states are forced to converge.

If the model attractor differs from the real attractor, error will instead grow until it saturates at the difference in forcing.
Elucidating Instabilities with Bred Vectors

Contours: Zonal Mean Temperature; Shading: Bred Vector Temperature

Late Autumn
Ls=180–240°

Winter Solstice
Ls=240–300°

Early Spring
Ls=300–360°

Late Spring
Ls=0–60°

Summer Solstice
Ls=60–120°

Early Autumn
Ls=120–180°
Martian Atmosphere Near-Surface Instabilities in relation to **Topography**

Bred Vectors indicate instabilities that clearly drive the ensemble spread.

The seasonal evolution of bred vectors reveal quiescent periods, as well as those marked by chaotic error growth.

Wave 3 longitudinal peaks in seasonal mean BV activity correspond to regions downstream of elevated terrain, indicating **lee cyclogenesis** may be an important source of instability.
Barotropic and Baroclinic Processes

Origins of Instabilities:
BV Kinetic Energy Equation

Near surface: **baroclinic conversion**:
BV Pot. En. => BV Kin. En.

In jets aloft: regions of **barotropic conversion**:
Control Kin. En. => BV Kin. En.

Near jet maxima:
BV Kin. En. => BV Pot. En.
The Martian Polar Vortex

“Blobs” of potential vorticity rotate around the pole; the time mean PV field reveals an annular structure.
What is the sensitivity of analyses to aerosol distribution?
Can we converge upon a synoptic state?
Traveling Waves and Dust

Simple Reanalysis:
Fixed Dust
No Bias Correction

Do reanalyses with different model configurations, dust specification, initial conditions, and data assimilation techniques converge on the same synoptic state of traveling waves?

It appears they may, although the details differ.

Advanced Reanalysis:
TES Dust and Water Ice Clouds
Empirical Bias Correction

3.5 km eddy T [shading], (u, v) [arrows], p_s [contours]
Wave Comparison:

NH wave amplitudes compare favorably among reanalyses, and with TES FFSM product.
2001 Global Dust Storm

TES Begins

MY 24

TES Ends

MY 25

MCS Begins

MY 26

MY 27

MY 28

MY 29

MY 30

Mars Climate Database 5 Dust Visible Column Opacity Courtesy of Luca Montabone
Mars TES/LETKF Performance

• How sensitive are temperature reanalyses to the choice of dust aerosol distribution?

Next step: formal aerosol assimilation with the LETKF.
Improving Aerosol Representation

MCS Free Runs: Observation minus Model Bias

<table>
<thead>
<tr>
<th>Seasonal Dust, No Ice Cloud</th>
<th>Seasonal Dust + Ice Cloud</th>
<th>3 Tracers + Ice Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCS Assimilation: Observation minus Model Bias

<table>
<thead>
<tr>
<th>Seasonal Dust, No Ice Cloud</th>
<th>Seasonal Dust + Ice Cloud</th>
<th>3 Tracers + Ice Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MGCM vs. MCS Aerosol

Challenges for GCMs:
Mars GCMs do not yet handle detached dust layer very well.

Two hypotheses:
Rafkin: topographic convection
Spiga: “rocket dust storms”
New Hypotheses for Dust Lifting

Rafkin: radiative-dynamic feedbacks

Spiga: “rocket” dust storms

Figure 5: Rocket dust storm (shown in the dust density-scaled opacity field) or conio-cumulonimbus [Spiga et al., 2013] (left) vs. terrestrial cumulonimbus (right, source: NOAA website).
Strategies for Analyzing Aerosol

Constrain vertical distribution:
• From aerosol vertical profiles.
• From temperature fields.

Constrain column opacity:
• From brightness temperature fields.
• From column opacity products.

Estimate model / assimilation parameters:
• Distribution of increment among tracer sizes.
• Ice cloud radiative scaling factor.
• Surface dust fluxes.
Fig. 2. Demonstration of EMARS reanalysis fields overlaid on Mars Orbital Camera (MOC) imagery during the MY 24 Ls 224 flushing storm. Reanalysis winds can be used to study the transport of dust equatorward, as well as frontal structures associated with the storm.
Features of Martian Weather
Inform Assimilation System Design
And Motivate Science Questions

- Diurnal Cycle, Thermal Tides, Topography
- Traveling Weather Systems
- Water Ice Clouds
- Seasonal CO₂ Polar Ice Caps
- Dust Devils, Regional and Global Storms
- Optimal Window Length and Inflation
- Localization Scales, Verification Metrics
- Tuning Model Physics
- Enforcing CO₂ Conservation
- Representing Aerosols in Ensemble

- What is the predictability horizon for Mars weather forecasting?
- What instabilities give rise to forecast errors and changes in wave regimes?
- How well are tides and traveling weather systems depicted in reanalyses, and can they be linked to dust lifting?
- What is the spatial distribution and time evolution of ice and dust aerosol?
- What mechanisms are responsible for global dust storm formation?
Findings: Mars Atmosphere Reanalysis

- We have **successfully assimilated** both nadir (TES) and limb (MCS) Mars temperature profiles, creating 4 years of reanalysis.
- We have demonstrated that data assimilation analyses converge about a unique synoptic state, and compare favorably with other products.
- We have used the reanalysis to examine predictability, traveling waves, thermal tides, and the impact of dust and water ice clouds.
- The Mars atmosphere has regions of chaotic error growth, as well as relatively quiescent regions dominated by aerosol forcing, which has implications for ensemble spread.
- Comparisons of free runs and assimilations with observations identify **vertical aerosol distribution** as a leading cause of bias (and RMSE) in analyses and forecasts. The development of an aerosol reanalysis is underway.
The atmosphere of Mars: Insights on weather and predictability from ensemble data assimilation of spacecraft observations

Acknowledgements:
Eugenia Kalnay
Mars Team: John Wilson, Ross Hoffman, Matthew Hoffman, Kayo Ide, Takemasa Miyoshi;
Tim McConnochie, Luca Montabone, Thomas Navarro, Darryn Waugh, MCS Team;
Students: Yongjing Zhao, Petros Kalogeras, Hart Gillespie, Matthew Wespetal;

Mars Atmosphere Community;
UMD Weather Chaos Group;
PSU & AOSC graduate students and faculty;