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Outline
• Basics	of	the	weather	and	climate	of	Mars

• Creating	a	Mars	Reanalysis
• Observations,	Model,	Assimilation	System
• Refinements	and	Evaluation

• Exploring	Science	Questions
• Instabilities	and	Predictability
• Traveling	Waves
• Dust	Storms	and	Water	Ice	Clouds
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Comparing	the	Earth	and	Mars
Variable Earth Mars
Radius 6378 km 3396 km

Gravity 9.81m s-2 3.72m s-2

Solar Day 24 hours 24 hours 39 minutes

Year 365.24 earth days 686.98 earth days

Obliquity (Axial Tilt) 23.5 deg 25 deg

Primary Atmospheric 
Constituent

Nitrogen and Oxygen Carbon Dioxide

Surface Pressure 101,300 Pa 600 Pa

Deformation Radius 1100 km 920 km

Surface Temperature 230-315 K 140-300 K

Table	Courtesy	of	Matthew	Hoffman	and	John	Wilson
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Mariner 
Program: 

Observed Dust 
Storms

Viking 
Lander: 
Surface 
Pressure 

Time Series

Images Courtesy of Wikipedia

Mars Global 
Surveyor: 

TES, MOC, 
MOLA…

Mars 
Reconnaissance 

Orbiter: 
MCS, MARCI…

Mars Pathfinder: 
Surface Weather

Mars Odyssey: 
Imaging and 
Spectrometry

Mars Phoenix 
Lander: 

Precipitation, 
Water Ice

Mars Exploration 
Rovers: Dust 

Devils

Spacecraft	Exploration	of	Mars

Mars	Science	Laboratory	
(MSL)

– Curiosity	rover
– Launched	Nov.	2011,	

Arrived	on	Mars	Aug.	
2012

– Rover	Environmental	
Monitoring	Station	
(REMS)	– Air	and	
Ground	Temperature,	
Winds,	Surface	
Pressure,	Relative	
Humidity,	UV	Radiation

2015
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Martian	Topography

Hellas	Basin

Vastitas	Borealis

Valles	Marineris

Olympus	Mons
~5	km	

Hemispheric	
Dichotomy	in	
Elevation

Argyre	Basin
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Features	of	Martian	Weather

Hellas	Basin

Olympus	Mons

Seasonal	 CO2 Polar	Ice	Cap

Water	Ice	Clouds

• Traveling	Weather	 Systems
• Thermal	Tides
• Water	Ice	Clouds
• Precipitation	 (“snowfall”	detected	aloft)
• Surface	Frosts,	Fogs
• Polar	Caps	– Water	and	CO2 Ice
• Dust	Devils
• Regional	and	Global	Dust	Storms

MGS	Mars	Orbital	Camera	(MOC)	Visible	Image

Figure Courtesy of NASA/JPL and Malin Space Science
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The	Dust	Storm	Enigma

Figure Courtesy of NASA/JPL
Prior to Global Dust Storm During Global Dust Storm

Whereas local dust storms occur every year, planet-encircling 
global dust storms occur irregularly every 2-3 Martian years.

The modeling of dust storms and their inter-annual variability 
remains a challenge for the Mars weather and climate community.
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Creating	a	Mars	Reanalysis
• Spacecraft	Observations
• Mars	Global	Circulation	Model
• Data	Assimilation	Techniques
• Performance	Evaluation	and	Validation
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TES (Thermal	Emission	Spectrometer)

Sample	locations	of	TES	profiles	during	6-hour	interval

MCS	(Mars	Climate	Sounder)
Thermal	Emission	Spectrometer	(TES)	 Mars	Climate	Sounder	(MCS)	

Observations	from	1997-2006.	 Observations	from	2006-present.	

Nadir	sounder.	 Limb	sounder.	

Temperature	retrievals	at	19	vertical	levels	
up	to	40	km;	column	dust	opacity.	

Temperature,	dust,	and	water	ice	retrievals	at	
105	vertical	levels	up	to	80	km.	

Observation	error	estimated	at	3	K;	
characteristics	not	well	known.	

Random	error	<	1K	at	elevations	below	50	km;	
estimated	systematic	error	of	1-3	K.	

Observation errors	have	both	random	and	
systematic	components,	and	include	 instrument	
error	and	errors	of	representativeness.

TES

MCS

Latitude	 (deg)
Longitude	(deg)
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GFDL	Mars	Global	Circulation	Model	(MGCM)

• Finite	volume	dynamical	core
• Latitude-longitude	 grid
• 60	x	36	grid	points	(6° x	5.29° resolution)
• 28	vertical	 levels
• Hybrid	p	/	σ vertical	coordinate
• Gaseous	 and	condensed	 CO2 cycle
• Shortwave	and	IR	radiative	transfer	with	the	

option	for	dust	radiative	feedback
• Soil	model,	boundary	layer	scheme,	water	

budget,	gravity	wave	drag,	ice	cloud	
microphysics

• Tracers	for	dust,	water	vapor,		and	water	ice
• Dust	lifting	and	sedimentation

Developed	by	R.	John	Wilson,	NOAA	GFDL

Latitude	 (deg)

MGCM	Levels
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Martian	Diurnal	Cycle

• The	thermal tide can	be	
tracked	as	the	tongue	of	
warm	temperatures	 	
centered	around	 the	
subsolar	point	as	it	moves	
across	the	planet	over	the	
course	of	a	day.	

• Diurnal temperature	
changes in	the	summer	
hemisphere	 can	approach	
100	K.

Longitude	(deg) Longitude	(deg)
Plotted:	MGCM	near-surface	temperature	field	at	NH	Winter	Solstice	in	0.25	sol	intervals.

Contours	are	topography.

Hour 00 Hour 06

Hour 12 Hour 18
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NH Winter Solstice

Zonal Mean Temperature

NH Winter Solstice

Zonal Mean U-Wind

Martian	Seasonal	Cycle

Westerly	
Jets

Adiabatic	
Warming	
from	
Global	
Hadley	
Cell	
Descent

NH Spring Equinox

Zonal Mean U-Wind

NH Spring Equinox

Zonal Mean Temperature
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Assimilation:	Optimally	Combining	
Observations	with	a	Model

Update:	Temperature,	 U	and	V	Wind,	Surface	Pressure

+1 hour+0 hours
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Improving	Assimilation	Performance

• Freely	Running	Model

• Initial	Assimilation	

• Adaptive	 Inflation	 		
(Miyoshi	2011)

• Varying	 Dust	Distribution

• Empirical	 Bias	Correction	
(Danforth	et	al.,	2007)

Evaluated by comparing 0.25 sol forecasts with observations.
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Improving	Assimilation	Performance
• Freely	Running	Model

• Initial	Assimilation	

• Adaptive	 Inflation

• Varying	 Dust	Distribution

• Empirical	 Bias	Correction

• Localization	 Tuning	

• CO2	Mass	Conservation

• Assimilation	 Window	Length

Evaluated by comparing 0.25 sol forecasts with observations.

Ongoing Development:

Hybrid EnKF/Var Data Assimilation
(Grad Student Matthew Wespetal)

New methods for assimilating 
retrievals: transforming 
observations to remove the prior 
and vertical error correlations,  
enabling interactive retrievals
(Collaborator Ross Hoffman, AER)
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MCS TES

MCS TES

Bias

Random	
Error

NH	Autumn	Ls	185-203
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Reanalysis forced by TES Dust Opacities

Horizontal and vertical dust distribution determined by MGCM advection of tracers. 

Dust injected/removed from boundary layer to match observations.  

Ensemble varies strength of water ice clouds.

With model improvements and use of observed 
dust information, biases are generally reduced.

NH Winter
Ls=255–275°

NH Autumn
Ls=180–198°

NH Summer
Ls=72–85°
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Reduction in bias will occur with improved MGCM parameterizations, as well 
as by improving the dust and water ice distributions through formal 
assimilation of observation information and parameter estimation.

Reanalysis with diurnal Empirical Bias Correction using 10-sol window.

Time mean analysis increment from past 10 sols is applied every 0.25 sol
Empirical bias correction accounts for model error, including imperfect 
knowledge of dust and water ice aerosol distributions and properties.

NH Winter
Ls=255–275°

NH Autumn
Ls=180–198°

NH Summer
Ls=72–85°
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Courtesy of Grad Student Yongjing Zhao

Resonance	induced	to	Semi-Diurnal	Tide		
by	6-hr	Data	Assimilation		Windows

Solution: 
Use shorter assimilation 
window (1 or 2 hours)

Wave 4 spatial pattern of observation 
increments modulates semi-diurnal 
tidal modes through constructive 
interference.
(On Mars, topography also modulates 
the tides.)
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Evaluating	the	Reanalysis

• Comparisons	with	freely	running	forecasts.
• RMSE	and	bias	of	short	term	forecasts	initiated	from	
ensemble	analyses.

• Comparisons	to	other	reanalyses.
• Comparisons	to	independent	Radio	Science	
temperature	profiles	and	rover	data.

• Feature-based	evaluation:	traveling	waves,	tides,	
aerosols.
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Reanalysis	Intercomparison

• Zonal mean statistics of temperature differences between the analyses reveal a 
general agreement of the analyses.

• Larger disagreements exist at cap edge baroclinic zones, as well as in upper levels 
above TES coverage, which is due to bias from model differences. 

• Reanalysis also compare favorably to independent Radio Science profiles.
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Curiosity Rover
Courtesy of NASA
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Assessing	Predictability	through	
Numerical	Weather	Prediction

Free Run

Reanalysis

Forecast starting 
from Reanalysis

Example from NH Autumn, MY 24
Forecast Initiated from Ls=192°

Observation 
Error
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Free Run

Reanalysis

Forecast starting 
from Reanalysis

• What factors control the evolution of 
forecast error?
• How does forecast error vary by 
region and season?

Predictability Horizon

Assessing	Predictability	through	
Numerical	Weather	Prediction

Example from NH Autumn, MY 24
Forecast Initiated from Ls=192°
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Fig. 1. Performance of the MGCM-LETKF during NH summer (~Ls 100), evaluated by 
comparing RMS differences of forecasts with TES observations, without and with ice cloud 
parameterization, and with various assimilation window lengths. Error bar with one standard 
deviation for each experimental run is also included. (From Zhao et al., 2015)

Forecast	Skill	on	Mars
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• Dynamical	Instabilities	/	Chaos

• Model	Error	/	Forcing

Sources	of	Forecasting	Error

Small differences in initial conditions 
between two similar states grow until 
the error saturates and they are no 
different than two random states from 
climatology.

Model errors have both random and 
systematic components.

In a forced system, spread decreases 
over time as states are forced to 
converge.

If the model attractor differs from the real 
attractor, error will instead grow until it 
saturates at the difference in forcing.
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Early AutumnSummer SolsticeLate Spring

Elucidating Instabilities with Bred Vectors
Early SpringWinter SolsticeLate Autumn

Ls=180–240° Ls=240–300° Ls=300–360°

Ls=0–60° Ls=60–120° Ls=120–180°

Contours: Zonal Mean Temperature; Shading: Bred Vector Temperature
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Martian	Atmosphere	Near-Surface	Instabilities
in	relation	to	Topography

Shading:	Bred	Vector

Contours:	Temperature

Wave	3	longitudinal	peaks	
in	seasonal	mean	BV	activity	
correspond	 to	regions	
downstream	of	elevated	
terrain,	 indicating	lee	
cyclogenesis	may	be	an	
important	source	of	
instability.

Bred Vectors indicate instabilities that clearly drive the ensemble spread.

The seasonal evolution of bred vectors reveal quiescent periods, as well as 
those marked by chaotic error growth.
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Temperature	BV BV	Kinetic	Energy

Baroclinic	Conversion Barotropic	Conversion

Barotropic and Baroclinic Processes

Near surface: baroclinic
conversion: 
BV Pot. En.=> BV Kin. En.

In jets aloft: regions of 
barotropic conversion:
Control Kin. En.=> BV Kin. En.

Near jet maxima:
BV Kin. En. => BV Pot. En.

Ps
eu
do

-P
re
ss
ur
e
(h
Pa
)

Latitude Latitude

Origins	of	Instabilities:	
BV	Kinetic	Energy	Equation
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The	Martian	Polar	Vortex

“Blobs” of potential 
vorticity rotate around 
the pole; the time 
mean PV field reveals 
an annular structure. 
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What	is	the	sensitivity	of	analyses	to	
aerosol	distribution?

Can	we	converge	upon	a	synoptic	state?
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Simple	Reanalysis:
Fixed	Dust
No	Bias	Correction

Advanced	Reanalysis:
TES	Dust	and	Water	Ice	Clouds
Empirical	Bias	Correction

Do	reanalyses	with	different	
model	configurations,	dust	
specification,	 initial	conditions,	
and	data	assimilation	
techniques	converge	on	the	
same	synoptic	state	of	traveling	
waves?

It	appears	they	may,	although	
the	details	differ.

3.5	km	eddy	T	[shading],
(u,	v)	[arrows],	ps [contours]	

Traveling	Waves	and	Dust
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Wave 
Comparison:

NH wave 
amplitudes 
compare 
favorably 
among 
reanalyses, 
and with TES 
FFSM product.
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Mars	Climate	Database	5	Dust Visible	Column Opacity	Courtesy	of	Luca	Montabone

MY 25

MY 26

MY 27 MY 30

MY 29

MY 24

MY 28

2001 Global 
Dust Storm

TES 
Begins

TES Ends

MCS 
Begins
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Mars	TES/LETKF	Performance

Next step: formal aerosol assimilation with the LETKF.

• How	sensitive	are	temperature	reanalyses	to	
the	choice	of	dust	aerosol	distribution?
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Improving	Aerosol	Representation

3	Tracers	+	Ice	CloudSeasonal	Dust	+	Ice	Cloud

Seasonal	Dust,		No	Ice	Cloud 3	Tracers	+	Ice	CloudSeasonal	Dust	+	Ice	Cloud

Seasonal	Dust,		No	Ice	Cloud
MCS	Assimilation:	Observation	minus	Model	Bias

MCS	Free	Runs:	Observation	minus	Model	Bias
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MGCM	vs.	MCS	Aerosol
MGCM	Forecast	Aerosol MCS Retrieved	Aerosol Opacities	Normalized	to	610	Pa

Challenges for 
GCMs:

Mars GCMs do not 
yet handle detached 
dust layer very well.

Two hypotheses:

Rafkin: topographic 
convection

Spiga: “rocket dust 
storms” 

Dust

Ice
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New	Hypotheses	for	Dust	Lifting

http://www-mars.lmd.jussieu.fr/paris2011/abstracts/rafkin1_paris2011.pdf

Rafkin: radiative-dynamic feedbacks

Spiga: “rocket” dust storms

http://www-mars.lmd.jussieu.fr/oxford2014/abstracts/spiga_oxford2014.pdf
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Strategies	for	Analyzing	Aerosol
Constrain	vertical	distribution:
• From	aerosol	vertical	profiles.
• From	temperature	fields.
Constrain	column	opacity:
• From	brightness	temperature	fields.
• From	column	opacity	products.
Estimate	model	/	assimilation	parameters:
• Distribution	of	increment	among	tracer	sizes.
• Ice	cloud	radiative	scaling	factor.
• Surface	dust	fluxes.
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Fig. 2. Demonstration of EMARS reanalysis fields overlaid on Mars Orbital Camera (MOC) 
imagery during the MY 24 Ls 224 flushing storm.  Reanalysis winds can be used to study the 
transport of dust equatorward, as well as frontal structures associated with the storm.

Synoptic Weather Map on Mars during a Dust Storm
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Features	of	Martian	Weather

• Diurnal	Cycle,	Thermal	Tides,	Topography
• Traveling	Weather	 Systems
• Water	Ice	Clouds
• Seasonal	CO2 Polar	Ice	Caps
• Dust	Devils,	Regional	and	Global	Storms

Figure Courtesy of NASA/JPL and Malin Space Science

Inform Assimilation	System	Design

• Optimal	Window	Length	and	Inflation
• Localization	Scales,	Verification	Metrics
• Tuning	Model	Physics
• Enforcing	CO2 Conservation
• Representing	 Aerosols	 in	Ensemble

And	Motivate	Science	Questions

• What	is	the	predictability	horizon	for	Mars	weather	 forecasting?
• What	instabilities	give	rise	to	forecast	errors	and	changes	in	wave	regimes?
• How	well	are	tides	and	traveling	weather	 systems	depicted	 in	reanalyses,	 and	

can	they	be	linked	to	dust	lifting?
• What	is	the	spatial	distribution	and	time	evolution	of	ice	and	dust	aerosol?
• What	mechanisms	 are	responsible	 for	global	dust	storm	formation?
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Findings:	Mars	Atmosphere	Reanalysis
• We	have	successfully assimilated both	nadir	(TES)	and	limb	(MCS)	Mars	

temperature profiles,	 creating	4	years	of	reanalysis.
• We	have	demonstrated	 that	data	assimilation	analyses	converge	about	a	

unique synoptic state,	and	compare	 favorably	with	other	products.
• We	have	used	the	reanalysis	 to	examine	predictability,	 traveling waves,	

thermal tides,	and	the	impact	of	dust	and	water ice clouds.
• The	Mars	atmosphere	 has	regions	of	chaotic	error growth,	as	well	as	

relatively	quiescent	 regions	dominated	by	aerosol	 forcing,	which	has	
implications	for	ensemble	 spread.

• Comparisons	 of	free	 runs	and	assimilations	with	observations	 identify	
vertical aerosol distribution as	a	leading	cause	of	bias	(and	RMSE)	 in	
analyses	and	forecasts.	 	The	development	 of	an	aerosol	reanalysis	 is	
underway.
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