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PRACTICAL vs. INTRINSIC PREDICTABILITY

(Lorenz 1995; Melhauser & Zhang 2012 JAS)

Practical predictability: the
ability and uncertainty to
predict given practical initial
condition uncertainties
and/or model errors, both of
which remain significantly
big in the present-day
forecast systems.

Intrinsic predictability: the limit
to predict given nearly
perfect initial conditions and
nearly perfect forecast
systems, in other words
when the initial condition
and model errors become

infinitesimally small. “the butte
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“the butterfly effect” (Lorenz 1969)
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Path 1: error growth under large-scale instability ~ practical predictability

Path 2: error growth via upscale propagation~ depends on the slope

L
Eddy turn over time: t(k) ~ k=3/2E-1/2 (k)



A Multistage Upscale Error Growth Model for Mesoscale
Predictability

(Zhang et al. 2007, JAS)
Stage I, convective growth: Errors grow mostly from small-scale convective instability and

saturate at convective scales on O(1 h). The amplitude of saturation may be a function of CAPE
and its areal coverage determined by large-scale flows.

Stage II, transient growth: Saturated errors transform from convective-scale unbalanced to
larger-scale balanced motions through balance adjustment and GWs at the time scale O(2x/f).

Stage Il1, baroclinic growth: Balanced components of saturated error project onto the larger-

scale flow and grow with background dynamics and instability at the time scale of O(1day).
Stage 1 Stage 2 Stage 3
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Efficiency of Upscale Error Growth (path2)

Suppose we are only interested in predicting some
low wavenumber (ie large-scale) k,

How long before small-scale errors, confined to
wavenumbers greater than 2"k, affect k, ?

Let the time taken for a small-scale initial error, to
grow and nonlinearly infect k; be given by

QN)=72"k,)+7(2" k) +..7(2°k,)
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Power spectral density

Baroclinic wave simulations: Dry vs. Moist

Sun and Zhang (2016 JAS)
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Simulated dry baroclinic Jets have a -3 slope, while moist experiments show a transition at
mesoscale.



DTE Growth: Dry vs. Moist, random vs. large-scale IC error

DTE = %Z[(au)z + (50 + k(6T)?]

(Sun and Zhang 2016 JAS)
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Power spectral density

What happens we have large IC error?
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LARGE: large-scale baroclinic scale (4000 km) IC error with peak amplitude of 0.25m/s
LARGE100: 100 times IC error energy but 10 times wave amplitude peaks at 2.5m/s



Predictability: Random vs. large-scale IC error, dry vs. moist BWs
(Sun and Zhang, 2016, JAS)
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Gravity waves in baroclinic wave simulations: Dry vs. Moist

DRY MOIST

(Zhang 2004 JAS)

(a) EXPO0@132h (d) EXP100@116h

v' Adjustment and gravity waves likely play a key role in the error propagation across scales,
as hypothesized in Zhang et al. (2007 JAS).
v' Convection and gravity waves key to flatten the meso/small-scale spectral slope.



Why -5/3 mesoscale KE spectra with moist convection?
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What key processes: convection and gravity waves
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Kinetic Energy Spectra in our Simulation

wavelength (km)

wavelength (km)

400 200 100 &0

25 16

[0-16km]

400 200 1Q0 5 25 16
E(Ik) T T T T 0-2h§
2-4h | ]
4-6h| |

10

100
wavenumber

k*dE(k)/dt

[0-16km]

——0-2h
——2-4h|

10
wavenumber

100



Spectra Budget Analysis for Kinetic Energy

% =T(k) + B(k) + Flux(k) + D(k)

T(k): Energy transfer between
different scales

Lower Stratosphere

B(k): Energy converted from

e

AN potential energy, buoyancy
production
T(k) ()
L Upper Troposphere

Flux(k): Energy exchange
Flux(k) between different vertical
levels, induced by convection
and vertical propagating

Lower Troposphere gravity waves



ectra budget analysis at different levels
Sun, Rotunno and Zhang (2016, JAS, in review)
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Conceptual Model Fits for A Summertime Event
Selz and Craig (2015, MWR)

12 UTC 20 July 2007, plt = 36 h
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Tropical Cyclone Predictability Under Sm/s Shear

10m maxWSP from ensemble with minute initial perturbations
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(Zhang and Tao 2013, JAS; Tao and Zhang 2014 2015, JAME



Space-time filtering (Wheeler-Kiladis)

of multi-scale convective systems

convectively coupled equatorial waves (CCEW)
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Synopsis of Oct 2011 MJO active phase Courtesy of Ying

time-longitude plots of precipitation (color) and 200-mb zonal wind divergence (contours)
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Concluding Remarks

Predictability of multiscale weather with moist convection can be
intrinsically limited.

Moist convection and gravity waves are the key processes that
lead to the -5/3 mesoscale KE spectrum slope.

However, most of the current forecast error likely still dominates
by large IC and/or model deficiencies that can be reduced
through advanced DA techniques with high-resolution
observations and an improved cloud-resolving NWP model.

Nevertheless, it is of key importance to understand and estimate
the flow-dependent intrinsic predictability limit for multi-scale
weather and climate that is not a function of IC and model error.

The idea of intrinsic predictability does not mean we can do
nothing, but rather that all predictions must be considered
probabilistic.



