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Land Data Assimilation Systems
• “Land-surface models (uncoupled from an 

atmospheric model) forced with observations.” 
(NASA)

• Important for weather forecasting and 
flood/drought forecasting

• However, in current LDASs
– Hydrologic processes are not well described in the 

land surface models
– No data assimilation
– No capability of automated parameter optimization
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“The Noah and Mosaic 
models are useful only for 
about 10% of the 961 small 
basins, the SAC-SMA and 
VIC models are useful for 
about 30% of the 961 small 
basins” from 1 Oct 1979 to 30 
Sep 2007 (Xia et al. 2012)



Towards Improved LDASs

Modeling Technique
Incorporate physics-based 
hydrologic component 

Data Assimilation Technique
Fully utilize reanalyses, remotely-
sensed and in situ data
Automated parameter and state 
optimization

Improved land 
surface and 

hydrologic data 
assimilation 

systems
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Physically-Based Land Surface 
Hydrologic Model: Flux-PIHM
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Penn State Integrated Hydrologic Model (PIHM)Flux-PIHM

Shi et al. 2013 Journal of Hydrometeorology



Shale Hills Watershed
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Area: 0.08 km2

SSHCZO: Susquehanna/Shale Hills Critical Zone Observatory



Testing Flux-PIHM at Shale Hills

6Shi et al. 2013 Journal of Hydrometeorology



Flux-PIHM EnKF System

7Shi et al. 2014 Water Resources Research



Synthetic Experiment Design
• Site: Shale Hills Watershed
• Experiment period: 10 Feb to 1 Aug 2009
• Number of ensemble members: 30
• Assimilation interval: 3 days
• Observations: Truth run with white noise

– Outlet discharge
– Average water table depth at three wells
– Average soil water content at three wells
– Watershed average land surface temperature
– Watershed average sensible heat flux
– Watershed average latent heat flux
– Watershed average canopy transpiration

8Shi et al. 2014 Water Resources Research



What parameters are the most 
important to simulate the variables?
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• Hydrologic parameters
– Effective Porosity Θe
– van Genuchten soil parameter α
– van Genuchten soil parameter β

• Land surface parameters
– Zilitinkevich parameter Czil
– Minimum canopy stomatal resistance Rcmin
– Maximum canopy interception storage S

Shi et al. 2014 Journal of Hydrometeorology



Can EnKF system provide accurate 
estimates of parameter values?

10Shi et al. 2014 Water Resources Research



What if we use real observations?
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• Real observations: outlet discharge, water table depth, soil water content, and 
sensible and latent heat fluxes

• Assimilation interval: 7 days

Shi et al. 2015 Advances in Water Resources



How about model performances?
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• Forecasts using manually calibrated 
parameters and EnKF estimated parameters 
are similar

• Time cost:
• EnKF: 6.5 hours (parallel runs)
• Manual: Days—weeks

Shi et al. 2015 Advances in Water Resources



What observations do we need to 
constrain the parameters?

13Shi et al. 2014 Water Resources Research

Control: Discharge, WTD, SWC, LST, sensible and latent heat fluxes, transpiration
QST: Discharge, WTD, SWC, LST, sensible and latent heat fluxes, transpiration



What about spatial patterns?

Measurements 
(interpolated)

Flux-PIHM 
prediction

10-cm soil moisture pattern on Aug 23, 2009
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Calibrated only using 
outlet discharge and 
SWC and WTD at one 
location, and driven by 
spatially uniform forcing 
data

Shi et al. 2015 Hydrological Processes



Flux-PIHM EnKF System
• High fidelity land surface hydrologic model 

with physics-based hydrologic component
• Resolves high resolution land surface 

heterogeneity (101 ~ 102 m/hourly resolution)
• Performs multivariate data assimilation for 

dual state-parameter optimization
• Only requires discharge, soil water content, 

and land surface temperature to constrain 
model parameters
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SMAP soil moisture (3—9 
km)
MODIS LST (1 km)
MODIS LAI (1 km)

Hourly meteorological 
forcing at 1/8° resolution

Towards Large Scale High-Resolution
Land Surface Hydrologic Data Assimilation System
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WaterWatch
Sub-daily river discharge 
over 10,000 stations

NED

SSURGO NLCD

Flux-PIHM Data 
Assimilation System



Coupled Biogeochemistry Modules
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Flux-PIHM-BGC RT-Flux-PIHM
Chloride concentration

(Courtesy of Chen Bao)



Coupled Biogeochemistry
Data Assimilation
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Forest Ecosystem 
Model

Biome-BGC

5 cm
25 cm

70 cm

150 cm

Geochemical Box 
Model

WITCH

Reactive Transport 
Module

Crop Ecosystem Model
Cycles

Flux-PIHM Data 
Assimilation System
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Assimilation Interval

21Shi et al. 2014 Water Resources Research



Evolution of Model Variables

22Shi et al. 2014 Water Resources Research



What about the spatial 
patterns?
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Calibrated only using 
outlet discharge and 
SWC and WTD at one 
location, and driven by 
spatially uniform forcing 
data

Shi et al. submitted B


