Full gravity-wave characteristics inferred from long-duration balloon flights in the tropics and over Antarctica

Albert Hertzog, V. Jewtoukoff, A. Podglajen, R. Plougonven
LMD, Palaiseau, France

R. A. Vincent
University of Adelaide, Adelaide, Australia

http://www.tinyurl.com/strateole
Outline

• Motivations
• Superpressure balloons and balloon flights
• Techniques to retrieve gravity-wave characteristics
• Wave characteristics
 • In the southern hemisphere polar region
 • In the tropics
• Conclusions
Motivations

- Gravity waves contribute to the driving of middle-atmosphere large-scale circulations
 - Brewer-Dobson circulations in the extratropics
 - QBO and SAO in the tropics
- Gravity waves remain subgrid-scale processes in climate models
 - Their forcing of the background flow needs to be parameterized in those models
 - Source, propagation, breaking
- Gravity-wave observations can provide constraints to GWD parameterizations
 - Increase our confidence in climate projections
Superpressure stratospheric balloons

- (first order) Fly on constant-density surfaces in the lower stratosphere (~ 19 km/60 hPa)
 - Flight duration ~ 2-3 months
- Measurements of $\vec{X}(t)$, $P_T(t)$, $T(t)$
- Balloons are advected by the wind
 - u, v are deduced from successive balloon positions
 - Measurements provide intrinsic periods/frequencies ($\hat{\omega}$) of wave disturbances
Balloon flights

- Pre-Concordiasi (Tropics)
 - 3 flights
 - Feb. – May 2010

- Concordiasi (South Pole)
 - 19 flights
Balloon flights

- Pre-Concordiasi (Tropics)
 - 3 flights
 - Feb. – May 2010

- Concordiasi (South Pole)
 - 19 flights
Energy spectrum with balloon obs.

GPS measurements performed every minute during the 2010 flights => Long-duration balloons can resolve the whole spectrum of atmospheric waves.
Retrievals of gravity-wave characteristics (1)

- Wavelet decomposition of observed timeseries → \((t, \hat{\omega})\) space
- Working out linear GW polarization relations, and assuming perfect isopycnic balloon...
 - Momentum flux
 \[
 \text{Im}(\bar{\rho} \ddot{u}_\parallel^*) = -\bar{\rho} H \frac{N^2}{\hat{\omega}} \text{Re}(\ddot{u}_\parallel^* \ddot{w})
 \]
 - Phase speed
 \[
 \delta = \frac{1}{\bar{\rho} \hat{\delta}_-} \frac{\text{Re}(\bar{\rho} \ddot{u}_\parallel^*)}{\ddot{u}_\parallel}
 \]
 - Phase speed, where
 \[
 P_T' = P' + \zeta' \frac{\partial P}{\partial z}
 \]
 - Vertical wave number
 \[
 m = -\bar{\rho}^2 \hat{\delta}_- \left(\frac{N^2 - \hat{\omega}^2}{\hat{\omega}} \right) \frac{\text{Re}(\ddot{u}_\parallel^* \ddot{w})}{\bar{\rho}^2}
 \]
- Horizontal wave number through the GW polarization relation
- Ground-based frequency/phase speed through Doppler-shift equation
Retrievals of gravity-wave characteristics (2)

- But the balloons are not perfectly isopycnic...
- We looked at the response of superpressure balloons to gravity-wave disturbances (Vincent & Hertzog, AMT, 2014)

![Graph showing balloon neutral oscillation period, Brunt-Vaisala period, and isopycnic limit.](image)
Retrievals of gravity-wave characteristics (3)

- Tests based on (random) choice of GW characteristics, synthetic timeseries of balloon observations (including observation noise), and retrieval analysis

\[u' \parallel w' \quad \hat{c}_h \quad \theta \]

\[2\pi/\hat{\omega} \quad 2\pi/\hat{\omega} \quad 2\pi/\hat{\omega} \]

\[2f < \hat{\omega} < \frac{N}{2} \]

Vincent and Hertzog (2014)
Gravity-wave momentum fluxes

Absolute momentum fluxes

\[\overline{\rho u' w'} \]

Campaign mean: 8.8 mPa

Largest values over Peninsula and Transantarctic mountains (maximum: 180 mPa)

Lowest values over the Plateau

Ring of 8-10 mPa fluxes at 60°S over the ocean

Absolute momentum fluxes (Concordiasi 2010)
Zonal-mean momentum fluxes exhibit a secondary peak at 55°S, which seems to be associated with non-orographic gravity waves in the balloon data: Jet/front waves in the SH storm track.
Zonal and meridional momentum fluxes

Zonal momentum fluxes are negative almost everywhere
Campaign mean: -1.2 mPa

Insignificant bias on meridional momentum fluxes
Campaign mean: 0.1 mPa
Polar flights indicates a predominance of westward-propagating waves in the LS

Waves with zero ground-based phase speeds are associated with westward fluxes, i.e. mountain waves
Phase-speed momentum-flux spectrum

Polar flights indicate the predominance of westward-propagating waves in the LS.

Waves with small ground-based phase speeds are associated with westward fluxes, i.e. mountain waves.
Phase-speed momentum-flux spectrum

Polar flights indicate the predominance of westward-propagating waves in the LS.

Waves with small ground-based phase speeds are associated with westward fluxes, i.e., mountain waves.

Tropical flights do not show any preferential direction of propagation (isotropic sources + balloons experienced both QBO phases).

Mountain waves
Concordiasi

Pre-Concordiasi
1D phase-speed spectrum

Concordiasi flights

Most of the flux associated with $|c| < 50$ m/s
Ground-based phase-speed spectrum narrower than the intrinsic phase-speed spectrum
1D phase-speed spectrum

Pre-Concordiasi flights

Intrinsic phase speed

\(\sigma_{\hat{c}_x} \sim 20 \text{m/s} \)

Ground-based phase speed

\(\sigma_{\hat{c}_y} \sim 20 \text{m/s} \)

Phase-speed spectrum in the tropics are more symmetric than over the Pole

Isotropy of convective source and wind filtering
\((m, \hat{\omega})\) 2D spectra

Momentum fluxes almost separable in \(m\) and \(\hat{\omega}\)

Largest fluxes associated with 3-10 km

(Kinetic-) energy associated with mostly long-period waves

Mountain waves show up at \(\lambda_z = 3\) km, \(\hat{T} = 1-4\) hr

Corresponding to \(\lambda_h = 100-200\) km
(\(m, \hat{\omega}\) 2D spectra)

Momentum fluxes almost separable in \(m\) and \(\hat{\omega}\).
Largest fluxes associated with 3-10 km.

(Kinetic-) energy associated with mostly long-period waves.

Mountain waves show up at \(\lambda_z=3\) km, \(\hat{T}=1-4\) hr.
Corresponding to \(\lambda_h=30-150\) km.
(m, \hat{\omega}) 2D spectra

Momentum fluxes almost separable in m and \hat{\omega}.
Largest fluxes associated with 3-10 km
(Kinetic-) energy associated with mostly long-period waves

Mountain waves show up at \lambda_z=3 \text{ km}, \hat{T} = 1-4 \text{ hr}

Equatorial 2D spectra much like the polar ones, but extend to lower intrinsic frequencies (and we did not explore the even longer-period waves)

Balloon’s artifact
(k_h, m) 2D spectra

Waves with small horizontal scales (down to 10 km) contribute more to the momentum fluxes than to the kinetic energy.
Waves with small horizontal scales (down to 10 km) contribute more to the momentum fluxes than to the kinetic energy.

Kinetic-energy dominated by long-horizontal, long-period waves in the tropics

Momentum flux spectrum broader (shallower spectral slopes)
PDF/Intermittency

Concordiasi absolute momentum fluxes ($\rho<u',\rho'w'>$)

Concordiasi

Pre-Concordiasi

Occurrence frequency

(mPa)
PDF/Intermittency

Concordiasi absolute momentum fluxes ($\rho<u',w'>$)

Concordiasi
Pre-Concordiasi
Peninsula
PDF/Intermittency

Concordiasi absolute momentum fluxes \(\langle \rho u''/w' \rangle \)

Concordiasi
Pre-Concordiasi
Peninsula
Southern ocean

Occurrence frequency

(mPa)
PDF/Intermittency

Concordiasi absolute momentum fluxes ($\rho<u''/w'>$)

- Concordiasi
- Pre-Concordiasi
- Peninsula
- Southern ocean
- Plateau

Occurrence frequency vs. (mPa)
Contribution of the 10% largest wave events to the total flux
Pre-Concordiasi: 32%
Southern Ocean: 32%
Plateau: 37%
Concordiasi: 49%
Peninsula: 84%
Conclusions

- Long-duration balloons provide a unique description of the whole gravity-wave field in the lower stratosphere
 - Quantitative assessment of momentum fluxes in the lower stratosphere
 - Peninsula mountain wave hotspot
 - Importance of non-orographic GW on the zonal-mean MF at 50-60°S
 - Insights into phase-speed spectrum and horizontal/vertical wavelengths
 - Highlight gravity-wave intermittency
- Strateole 2 (2018-2023) will study wave processes at global scale in the deep tropics
 - 45 balloon flights in total
 - Generation by convection
 - Forcing of the QBO/SAO
 - Transport through the CPT
 - Interaction with microphysics
Thank you for your attention!