Mountain wave excitation under extreme forcing conditions and propagation into the middle atmosphere

<u>B. Ehard</u>, B. Kaifler, N. Kaifler, A. Dörnbrack, S. Gisinger, J. Wagner and M. Rapp

Knowledge for Tomorrow

Institute of Atmospheric Physics, German Aerospace Center

SPARC, 18. May 2016 State College

Introduction

- Kaifler et al. (2015): deep vertical propagation of mountain waves is likely to be observed under two conditions
 - 1) weak to moderate forcing conditions and
 - 2) sufficiently strong stratospheric winds
- Dunkerton (1984), Sato (2009): GW are refracted/focused into the middle atmospheric jets due to meridional shear of the zonal wind
- →Examine the case during Deepwave with the largest stratospheric gravity wave activity, but only little wave activity in the mesosphere (31.7. 1.8.2014)

→What governs the vertical propagation: Instabilities?

Refraction?

ECMWF hor. wind and geopotential on 31 July 2014

Horizontal wind speed above Lauder from ECMWF

Lidar measurements at Lauder around 1 August 2014

Gravity wave potential energy density (GWPED) from Lidar measurements at Lauder

 $E\downarrow p=1/2 g\uparrow 2 /N\uparrow 2 (T\uparrow /T)$

Gravity wave potential energy density (GWPED) from Lidar measurements at Lauder

1) Reduction of GWPED @ 25-35 km 35-45 km stays low

2) Increase of GWPED @ 35-45 km 25-35 km stays high

Convective instability

• convective instabilitiy limit:

$$a = u'/c - u \ge 1$$

(Fritts and Alexander, 2003 (Eq. 58))

- Mountain waves: c=0
 - \rightarrow only the relative horizontal wind propagation remains

Horizontal wind speed above Lauder from ECMWF

 \mathcal{U}

Gravity wave potential energy density (GWPED) from Lidar measurements at Lauder

1) Reduction of GWPED @ 25-35 km 35-45 km stays low

2) Increase of GWPED @ 35-45 km 25-35 stays high

Hor. divergence and geopotential height on 31 July 2014

1 August 2014

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 300 hPa Valid: 20140801, 12 UTC

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 100 hPa Valid: 20140801, 12 UTC

100 hPa

10 hPa

35°S

l0°S

5°S

50°S

55°S

Propagational pathways on 31 July – 1 August 2014

Conclusions

Strong influence of the polar vortex edge on the vertical propagation of mountain waves

Even at midlatitudes!

Horizontal propagation has to be considered if purely vertical measurements are analyzed

→ Raises questions:

Did we really observe all "deep propagating cases" during Deepwave? Or was our volume of observations still too small?

Agreement ECMWF and Lidar

31 July 2014

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 300 hPa Valid: 20140731, 12 UTC

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 100 hPa Valid: 20140731, 12 UTC

155°E 160°E 165°E 170°E 175°E

55°S

100 hPa

10 hPa

55°S

AIRS on 31 July

Additional waves from Tasmania/Australia on 31 July

1 August 2014

MS-GWaves

Geopotential Height (m) & Horizontal Wind (m/s) at 700 hPa Valid: 20140801, 12 UTC

Valid: 20140801, 12 UTC

Geopotential Height (m) & Horizontal Wind (m/s) at 300 hPa

1 August 2014

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 300 hPa Valid: 20140801, 12 UTC

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 100 hPa Valid: 20140801, 12 UTC

100 hPa

10 hPa

35°S

l0°S

5°S

50°S

55°S

Saber GW Momentum flux (courtesy of M. Ern)

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

30 km z= 30.0 km mom. flux log10[10⁻⁺ Pa]

 $z= 30.0 \text{ km} \text{ mom. flux } \log 10[10^{-4} \text{ Pa}]$

50 km

z= 50.0 km mom. flux log10[10⁻⁴ Pa]

z= 50.0 km mom. flux log10[10⁻⁴ Pa]

