

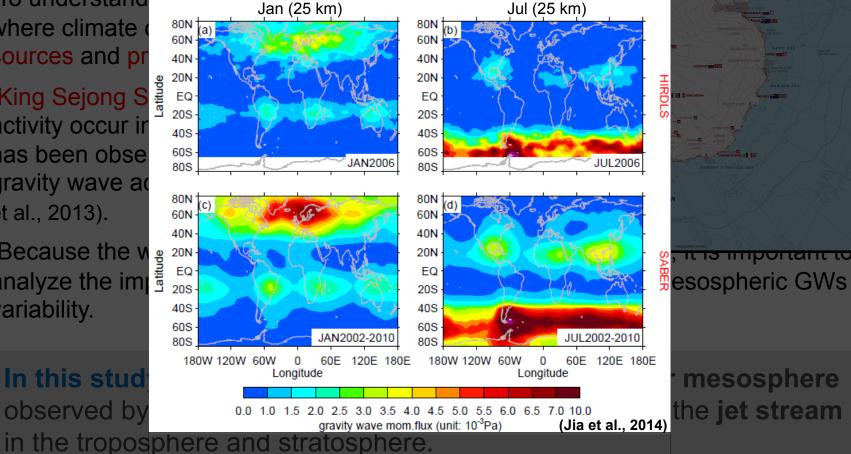
Gravity Waves in the Upper Mesosphere at King Sejong Station, Antarctica (62.22°S, 58.78°W) and Their Correlation with the Jet Stream

Byeong-Gwon Song¹, Hye-Yeong Chun¹, Yong Ha Kim², Changsup Lee³, and In-Sun Song³

¹ Department of Atmospheric Sciences, Yonsei University, Korea
 ² Department of Astronomy and Space Science, Chungnam National University, Korea
 ³ Division of Polar Climate Research, Korea Polar Research Institute, Korea

Introduction

 Gravity wave momentum flux (GWMF) it temperature perturbation using satellite d Antarctic Peninsula in wintertime (Jia et al


contributions of CWe t

- To understand where climate sources and pr
- King Sejong S activity occur in has been obse gravity wave a et al., 2013).
- Because the w ganalyze the im Because the w variability.

In this stud

observed by

Data and Methodology

Meteor radar data at KSS

Meteor radar at KSS					
Variables U, V, U variance, V variance					
Peri	od	Mar. 2007—Dec. 2014			
Deselution	Temporal Vertical	1 hour (sampling: every 2 min)			
Resolution	Vertical	2 km (80—100km, 11 levels)			

[Assumption] Large-scale motions are homogeneous within a 1 hour
 → Wind variances are induced by small-scale GWs

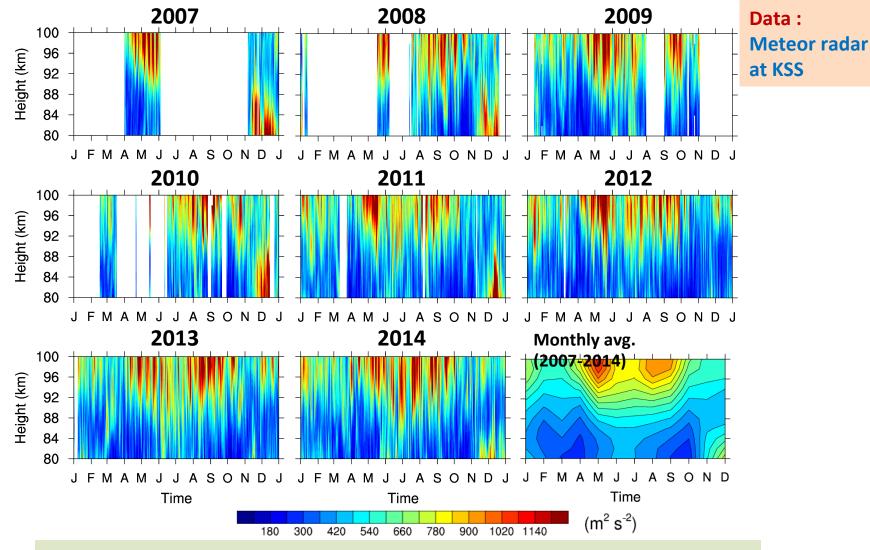
***** Total observation days of meteor radar

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
2007			31	30	31	4	-	-	-	-	24	31
2008	10	-	-	-	16	7	17	31	30	31	30	19
2009	19	28	31	30	31	30	31	31	30	29	3	_
2010	-	13	19	2	3	18	31	27	22	31	30	24
2011	31	28	19	30	31	30	31	30	30	31	29	31
2012	31	29	29	30	31	30	31	31	30	31	30	31
2013	26	28	31	30	31	30	31	31	30	31	30	31
2014	31	28	31	30	31	30	31	31	30	31	30	31

* High-resolution analysis and reanalysis

Data set		High-res. ECMWF-YOTC analysis	ERA-Interim reanalysis	
Period		May 2008—April 2010 (2 years)	1980—2014 (35 years)	
Variables used in this study		u, ν, ω	u, v, ω, Τ, Φ	
	Temporal	6 hours	6 hours	
Resolution	Horizontal	0.25° x 0.25°	1.5° x 1.5°	
	Vertical (Model top)	25 levels (1 hPa)	37 levels (1 hPa)	

***** GWMF estimated from high-resolution analysis data

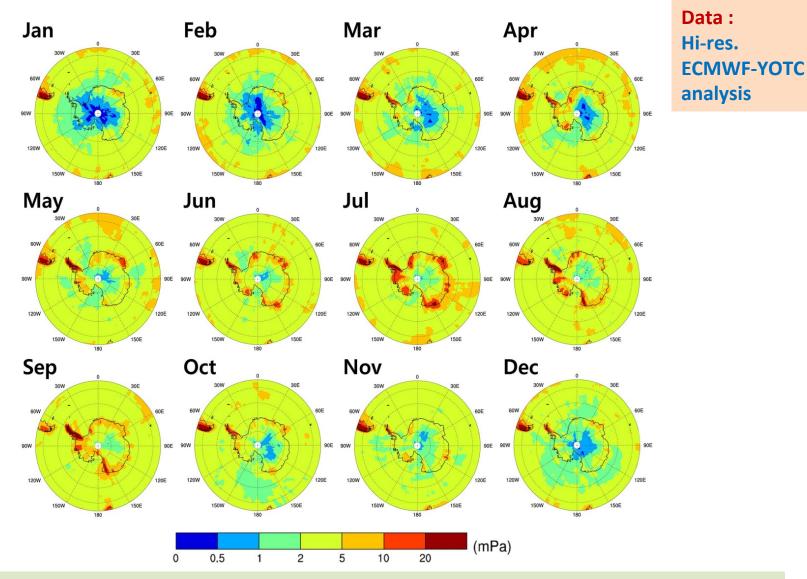

- $\left(\rho_0 \overline{u'w'}, \rho_0 \overline{v'w'}\right)$, where ρ_0 is density of standard atmosphere (Kim et al. 2009; Kim et al. 2012)
- Background (ψ) : 21 × 21-grid running average / GW perturbation : $\psi' = \psi \overline{\psi}$ • $|GWMF| = \sqrt{(\rho \downarrow o \ u1' \ w1')} 12 + (\rho \downarrow o \ v1' \ w1') 12$

* Diagnostics of GWs associated with the jet stream

 $\Delta NBE \text{ (residual of nonlinear balance equation, Zhang 2004; Chun et al. 2013)} \\ \Delta NBE = f\zeta - \nabla f2 \Phi + 2J(u,v) - \beta u + X - (\nabla \cdot V)f2 - \partial V / \partial p \cdot \nabla \omega$

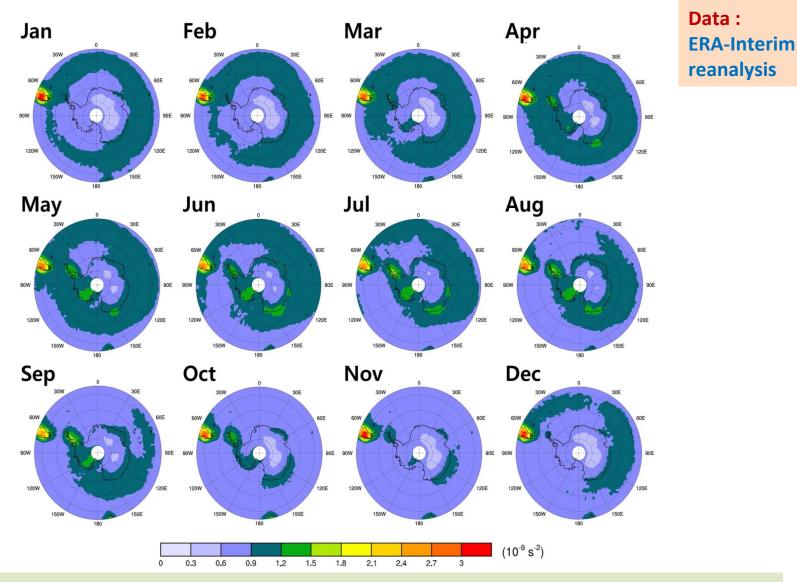
 $X = (u^{2} + v^{2}) tan^{2} \phi/a^{2} - (u^{2} + v^{2})/a^{2} cos^{2} \phi - 2tan\phi/a^{2} (u\partial u/\partial \phi + v\partial v/\partial \phi)$

Horizontal wind variance in the upper mesosphere at KSS

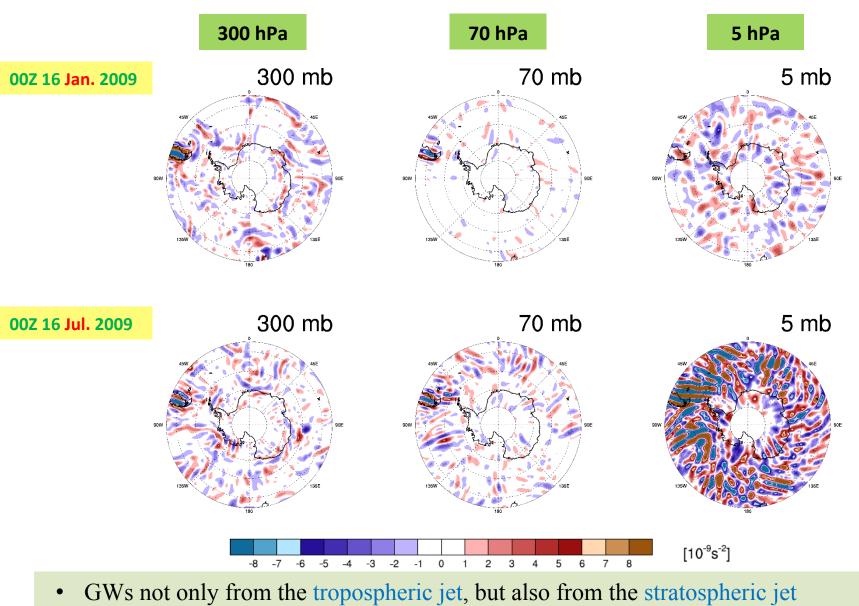


• Maximum in April—May and August—September

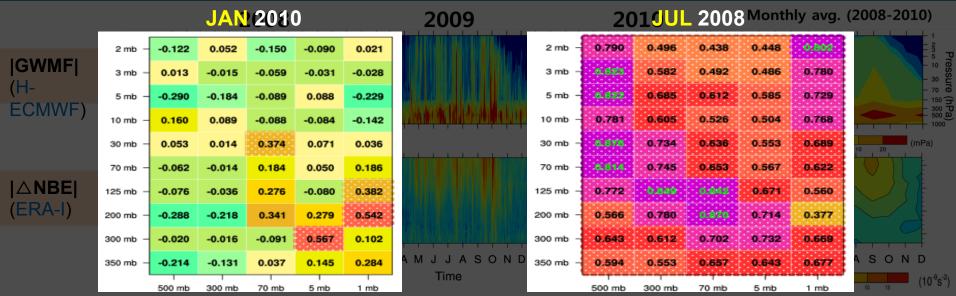
→ sudden increase of GW activities at the lower atmosphere near KSS


→ formation and breakdown of Antarctic vortex may partially contribute to the enhancement of GW activities (Yoshiki et al., 2004)

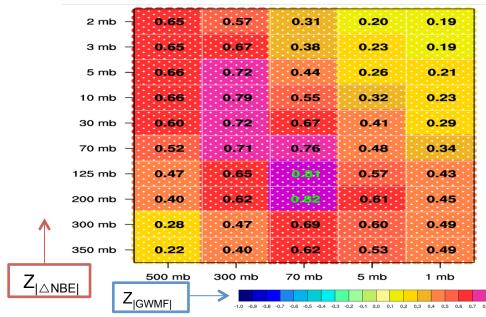
Monthly mean |GWMF| at 300 hPa in the SH (May 2008–Apr. 2010)


- Strong in May—September
- Local maxima at Antarctic peninsula, Tip of the Andes, and Antarctic coastline

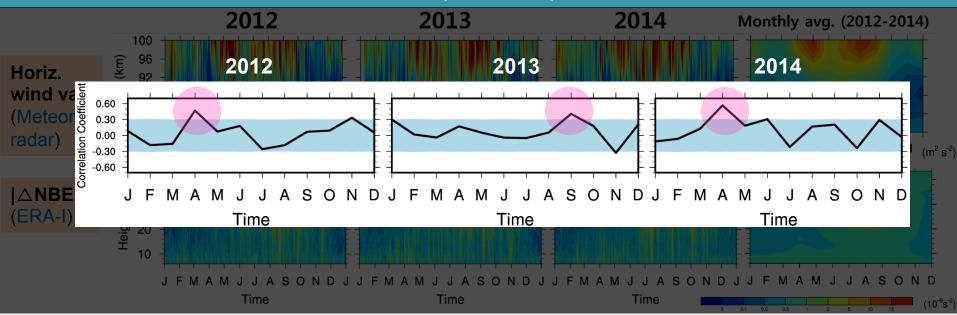
Monthly mean $|\triangle NBE|$ at 350 hPa in the SH (1980–2014)


- Persistent maxima in Tip of the Andes and Antarctic peninsula
- Large value in the Antarctic peninsula : winter > summer

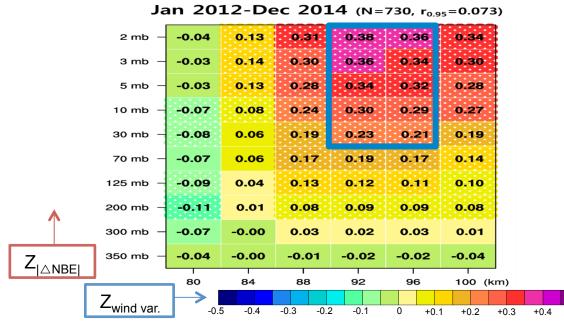
\triangle NBE at different altitudes


• Stratospheric vortex in winter-time is important

|GWMF| and |△NBE| near KSS


★ Correlation between |GWMF| and |△NBE|

May 2008-Apr 2010 (N=730, r_{0.95}=0.073)


- Statistically significant positive correlations exist at whole layers
- Jet stream in the troposphere and stratosphere is a dominant source of GWs in the troposphere and stratosphere near KSS especially in winter to early spring

Horizontal wind variance and |△NBE| near KSS

+0.5

✤ Correlation between wind variance and |△NBE|

- Positive correlation between the |△NBE| in the upper stratosphere and wind variance in the upper mesosphere, especially in April and September
- Strong mesospheric GW activities observed in Spring and Autumn seem to be related to the jet stream in the upper stratosphere

Summary

- Seasonal variations in GW activities in the upper mesosphere revealed two peaks in April–May and August–September, with a larger value in April–September from the 8-year (2007-2014) means, although interannual variations are considerable.
- GWMF estimated from the high-resolution ECMWF analysis was enhanced during May– September, and have local maxima at Antarctic peninsula, Tip of the Andes, and Antarctic coastline.
- Large value of △NBE exists near the Tip of the Andes and Antarctic Peninsula in the troposphere and along polar vortex in the stratosphere.
- Significant positive correlation between △NBE and GWMF implies that △NBE is a good diagnostics of GWs associated with jet stream in the troposphere and stratosphere, and GWMF at a particular altitude include not only GWs propagated from the lower layers but also GWs generated from in-situ source or GWs propagated downward from the upper layers.
- ANBE in the upper stratosphere is correlated well with the observed GWs in the upper mesosphere, especially in April and September.
- Sources of the GWs that observed in the upper mesosphere are being examined by backward integration of a 3-dimentional GW ray-tracing model, with wave characteristics observed from the meteor radar and airglow all-sky camera at KSS.

Monthly correlation between |GWMF| and |△NBE| near KSS

06/2008

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.691	0.710	0.626	0.510	0.345				
3 mb -	0.643	0.645	0.630	0.576	0.510				
5 mb -	0.600	0.643	0.589	0.593	0.472				
10 mb -	0.592	0.729	0.660	0.577	0.426				
30 mb -	0.677	0.760	0.792	0.715	0.629				
70 mb -	0.706	0.826		0.663	0.621				
125 mb –	0.717	0.795	0.902	0.732	0.749				
200 mb -	0.622	0.795	0.939	0.556	0.548				
300 mb -	0.705	0.645	0.791	0.628	0.724				
350 mb -	0.540	0.515	0.740	0.476	0.688				
	500 mb	300 mb	70 mb	5 mb	1 mb				

06/2009

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.608	0.593	0.514	0.411	0.065				
3 mb -	0.513	0.711	0.616	0.361	0.070				
5 mb -	0.565	0.735	0.624	0.269	0.035				
10 mb -	0.586	0.757	0.740	0.300	0.048				
30 mb -	0.556	0.782	0.757	0.171	0.124				
70 mb -	0.681	0.778	0.821	0.084	0.044				
125 mb -	0.544	0.738	0.832	0.176	0.034				
200 mb -	0.433	0.550	0.678	0.401	-0.166				
300 mb -	0.003	0.263	0.303	0.633	-0.120				
350 mb -	-0.058	0.161	0.118	0.527	0.017				
	500 mb	300 mb	70 mb	5 mb	1 mb				
	12/2008								

Correlation (abs. GWMF. vs abs. dNBE)

2 mb -	-0.332	0.099	-0.337	0.142	0.149
3 mb -	-0.117	-0.121	0.246	0.565	0.549
5 mb -	0.218	0.268	0.228	0.548	0.524
10 mb -	0.641	0.131	0.067	0.001	-0.076
30 mb -	-0.009	-0.052	0.549	0.053	0.072
70 mb -	-0.202	-0.160	0.979	0.489	0.517
125 mb -	-0.071	-0.216	0.979	0.779	0.770
200 mb -	0.005	-0.214	0,831	0.768	0.769
300 mb -	-0.141	-0.284	0.705	0.820	0.824
350 mb -	-0.094	-0.198	0.721	0.852	0.846
	-		******		
	500 mb	300 mb	70 mb	5 mb	1 mb

12/2009

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.155	0.149	-0.207	-0.017	-0.165				
3 mb -	0.416	0.374	-0.350	-0.044	-0.015				
5 mb -	0.374	0.390	-0.309	-0.012	0.049				
10 mb -	0.551	0.627	-0.230	0.037	0.058				
30 mb -	0.396	0.595	-0.206	0.089	0.258				
70 mb -	-0.301	-0.206	0.317	0.500	0.278				
125 mb -	-0.278	-0.134	0.468	0.343	0.426				
200 mb -	-0.265	-0.134	0.370	0.619	0.660				
300 mb -	-0.423	-0.172	0.425	0.624	0.724				
350 mb -	-0.356	-0.100	0.289	0.461	0.588				

	0	5	/2	00	8

	Correlat	ion (abs	. GWMF	. vs abs	. dNB
2 mb -	0.637	0.298	0.141	0.103	0.075
3 mb -	0.667	0.446	0.283	0.146	0.105
5 mb -	0.649	0.551	0.383	0.140	0.101
10 mb -	0.669	0.621	0.447	0.166	0.146
30 mb -	0.653	0.749	0.574	0.193	0.147
70 mb -	0.612	0.781	0.628	0.260	0.187
125 mb –	0.706	0.889	0.783	0.493	0.435
200 mb -	0.691		0.901	0.736	0.640
300 mb -	0.556	0.894	0.078	0.546	0.483
350 mb -	0.538	0.824	0.825	0.575	0.558
	500 mb	300 mb	70 mb	5 mb	1 mb

05/2009

Correlation (abs. GWMF. vs abs. dNBE								
2 mb -	0.734	0.540	0.657	0.223	0.384			
3 mb -	0.763	0.642	0.664	0.168	0.224			
5 mb -	0.740	0.694	0.710	0.190	0.217			
10 mb -	0.697	0.785	0.522	0.036	0.029			
30 mb -			0.726	0.078	0.210			
70 mb -	0.646	0.806	0.845	0.191	0.324			
125 mb -	0.707	0.506	0.755	0.305	0.372			
200 mb -	0.671	0.557		0.096	0.321			
300 mb -	0.280	0.116	0.245	0.478	0.605			
350 mb -	0.132	0.069	0.057	0.359	0.517			
	500 mb	300 mb	70 mb	5 mb	1 mb			
	4	A 14	201	0				

11/2008

Correlation (abs. GWMF. vs abs. dNBE									
2 mb -	0.243	0.077	-0.031	0.154	-0.015				
3 mb -	-0.094	0.071	0.040	0.084	-0.123				
5 mb -	0.199	0.318	0.068	0.056	0.062				
10 mb -	-0.236	0.078	0.428	0.434	0.318				
30 mb -	-0.088	0.102	0.332	0.302	0.346				
70 mb -	-0.089	0.106	0.700	0.695	0.524				
125 mb -	-0.206	0.005	0.724	0.688	0.521				
200 mb -	-0.169	-0.023	0.835	0.657	0.524				
300 mb -	-0.112	0.033	0.738	0.675	0.573				
350 mb -	-0.091	0.086	0.661	0.559	0.561				
	500 mb	300 mb	70 mb	5 mb	1 mb				

11/2009

Correlation (abs. GWMF. vs abs. dNBE								
2 mb -	0.154	0.017	-0.204	0.089	0.108			
3 mb -	0.079	0.289	-0.193	0.008	-0.233			
5 mb -	-0.134	0.388	0.036	0.103	0.029			
10 mb -	-0.054	0.596	0.263	0.142	0.036			
30 mb -	-0.151	0.546	0.418	0.195	-0.058			
70 mb -	-0.068	0.288	0.538	-0.094	-0.040			
125 mb -	-0.038	0.094	0.876	0.080	0.044			
200 mb -	-0.039	-0.163	0.720	0.442	0.237			
300 mb -	0.444	-0.014	0.309	0.242	0.504			
350 mb -	0.310	0.042	0.251	0.314	0.430			

	0	4/	2()0	9

2 mb

3 mb 5 mb 10 mb

30 mb

70 mb 125 mb 200 mb 300 mb

350 mb

2 mb 3 mb 5 mb 10 mb

200 mb

2 mb 3 mb 5 mb 10 mb 30 mb

200 mb 300 mb 350 mb

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.776	0.569	-0.107	-0.107	0.094				
3 mb -	0.782	0.594	-0.116	-0.139	0.164				
5 mb -	0.862	0.613	-0.092	-0.142	0.167				
) mb -	0.738	0.541	-0.051	-0.061	0.180				
) mb –	0.645	0.483	-0.040	-0.040	0.105				
) mb -	0.192	0.054	0.385	0.142	0.305				
5 mb –	-0.104	-0.135	0.574	0.032	0.315				
) mb -	-0.208	-0.202	0.629	0.153	0.192				
) mb -	-0.195	-0.239	0.761	0.383	0.141				
) mb -	-0.058	-0.113	0.574	0.258	0.184				
	500 mb	300 mb	70 mb	5 mb	1 mb				

04/2010 orrelation (abs. GWMF. vs abs. dNBE)								
0.182	0.174	0.037	0.142	0.295				
0.227	0.228	0.061	0.194	0.400				
0.174	0.171	0.042	0.157	0.422				
0.128	0.106	0.014	0.115	0.321				
0.170	0.018	0.037	0.311	0.077				
0.097	-0.071	0.112	0.097	-0.135				
-0.046	-0.014	0.103	0.073	-0.173				
-0.134	0.168	0.015	-0.123	-0.319				
0.203	0.174	-0.018	0.129	-0.261				
0.006	0.019	-0.174	0.011	-0.503				

10/2008

	00110144				
-	0.325	0.200	0.120	0.027	0.080
	0.369	0.348	0.251	0.130	0.253
-	0.141	0.664	0.556	0.252	0.428
-	0.053	0.568	0.520	0.282	0.293
-	0.004	0.691	0.742	0.462	0.501
-	-0.062	0.706	0.841	0.466	0.566
-	-0.057	0.733	0.834	0.439	0.600
-	-0.011	0.690	0.969	0.531	0.646
-	0.118	0.556	0.675	0.546	0.630
-	0.039	0.614	0.618	0.455	0.737

500 mb 300 mb 70 mb 5 mb 1 m

10/2009

	Correlation (abs. GWMF. vs abs. dNBE								
	0.942	0.804	0.107	0.090	0.140				
ì	0.960	0.811	0.112	0.067	0.179				
	0.954	0.787	0.106	0.051	0.178				
	0.060	0.839	0.345	0.210	0.281				
1	0.600	0.768	0.691	0.410	0.351				
	0.358	0.541	0.792	0.504	0.426				
	0.373	0.638	0.867	0.588	0.420				
	0.207	0.536	0:941	0.682	0.457				
	0.134	0.437	0.907	0.654	0.452				
	0.136	0.398	0.876	0.677	0.476				

03/2009

	Correlat	ion (abs	. GWM	vs abs	. dNBE
2 mb -	0.514	0.646	-0.074	-0.146	-0.085
3 mb -	0.353	0.377	-0.087	-0.075	0.101
5 mb -	0.230	0.122	-0.047	-0.118	0.022
10 mb -	0.337	0.254	0.182	-0.015	-0.051
30 mb -	0.361	0.384	0.040	-0.233	-0.060
70 mb -	-0.215	-0.184	0.677	0.193	0.256
125 mb -	-0.163	-0.153	0.760	0.265	0.294
200 mb -	-0.151	-0.143	0.758	0.432	0.389
300 mb -	-0.131	-0.141	0.438	0.407	0.377
350 mb -	-0.239	-0.238	0.456	0.273	0.488
	500 mb	300 mb	70 mb	5 mb	1 mb

03/2010

	Correlation (abs. GWMF. vs abs. dNBE									
2 mb -	-0.240	-0.230	0.531	0.266	0.099					
3 mb -	0.019	0.064	0.130	0.051	0.061					
5 mb -	0.085	0.165	-0.113	0.021	-0.034					
10 mb -	0.390	0.314	-0.035	0.060	0.062					
30 mb -	0.330	0.302	0.117	0.072	0.038					
70 mb -	0.358	0.261	0.157	-0.007	0.145					
125 mb -	0.354	0.343	-0.223	-0.300	-0.067					
200 mb -	-0.088	-0.121	0.016	-0.170	0.223					
300 mb -	-0.128	-0.106	0.115	0.031	0.276					
350 mb -	0.083	0.171	-0.045	-0.055	0.104					
	500 mb	300 mb	70 mb	5 mb	1 mb					

09/2008

Correlation (abs. GWMF. vs abs. dNBE)

2 mb -	0.508	0.510	0.430	0.209	0.111
3 mb -	0.478	0.542	0.460	0.242	0.071
5 mb -	0.646	0.763	0.654	0.273	0.118
10 mb -	0.674	0.829	0.756	0.402	0.229
30 mb -	0.595	0.777	0.801	0.491	0.278
70 mb -	0.680	0.829	0.791	0.462	0.259
125 mb -	0.523	0.669	0.849	0.678	0.411
200 mb -	0.531	0.644	0.830	0.572	0.371
300 mb -	0.361	0.460	0.754	0.664	0.560
350 mb -	0.290	0.414	0.703	0.640	0.577

09/2009

	Correlat	ion (abs	. GWMF	. vs abs	. dNBE
2 mb -	0.507	0.545	0.039	0.156	0.206
3 mb -	0.480	0.640	0.079	0.206	0.226
5 mb -	0.550	0.706	0.148	0.255	0.286
10 mb -	0.674		0.312	0.406	0.410
30 mb -	0.594	0.820	0.600	0.669	0.615
70 mb -	0.488	0.740	0.773	0.813	0.780
125 mb -	0.599	0.770			
200 mb -	0.379	0.665	0.829		
300 mb -	0.297	0.590	0.863	0.901	0.885
350 mb -	0.262	0.562	0.891	0.861	0.852

02/2009

Correlation (abs. GWMF. vs abs. dNBE								
2 mb -	-0.439	-0.241	0.429	-0.087	0.604			
3 mb -	-0.100	-0.371	-0.029	-0.225	-0.148			
5 mb -	-0.081	-0.287	-0.113	-0.018	0.356			
10 mb -	-0.196	-0.490	0.093	-0.142	0.059			
30 mb -	0.259	-0.035	-0.034	0.084	-0.050			
70 mb -	0.017	0.048	-0.120	-0.214	0.064			
125 mb -	0.241	0.088	-0.168	-0.193	0.062			
200 mb -	0.154	-0.105	-0.120	0.166	0.008			
300 mb -	0.053	-0.149	-0.295	0.141	-0.262			
350 mb -	-0.154	-0.275	-0.400	0.072	-0.124			
	500 mb	300 mb	70 mb	5 mb	1 mb			

Image: Stress of the stress of the

500 mb 300 mb 70 mb 5 mb

08/2008

Correlation (abs. GWMF. vs abs. dNBE)

		_			
2 mb -		0.747	0.346	0.250	0.275
3 mb -		0.830	0.423	0.300	0.347
5 mb -		0.859	0.543	0.413	0.506
10 mb -	0.673	0.880	0.594	0.457	0.567
30 mb -		858.0	0.744	0.581	0.663
70 mb -	0.814	0.908		0.709	0.778
125 mb –	0.766	0.881	0.905	0.761	
200 mb -	0.581	0.735	0.952	0.887	0.883
300 mb -	0.655	0.772	0.960	0.825	0.796
350 mb -	0.581	0.701	0.925	0.631	0.779

08/2009

Correlation (abs. GWMF. vs abs. dNBE)								
2 mb -	0.372	0.199	0.114	-0.051	0.261			
3 mb -	0.476	0.395	0.321	-0.066	0.264			
5 mb -	0.631	0.634	0.586	0.019	0.259			
10 mb -	0.740	0.810	0.773	0.104	0.399			
30 mb -	8.618	0.887	0.799	0.143	0.276			
70 mb -	0.605	0.800		0.136	0.380			
25 mb -	0.741		0.904	0.257	0.510			
00 mb -	0.365	0.511	0.606	0.412	0.595			
00 mb -	0.252	0.440	0.576	0.363	0.575			
50 mb -	0.142	0.257	0.354	0.155	0.429			

01/2009

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.589	0.528	-0.006	-0.084	-0.059				
3 mb -	0.586	0.532	-0.025	-0.097	-0.044				
5 mb -	0.594	0.536	-0.003	-0.094	-0.036				
10 mb -	0.589	0.522	0.058	-0.053	-0.056				
30 mb -	0.576	0.529	0.059	-0.076	-0.082				
70 mb -	0.101	0.076	0.431	0.099	0.175				
125 mb -	-0.056	-0.057	0.496	0.145	0.263				
200 mb -	-0.042	-0.043	0.604	0.269	0.224				
300 mb -	-0.132	-0.148	0.392	0.340	0.251				
350 mb -	-0.187	-0.192	0.268	0.217	0.327				
	500 mb	300 mb	70 mb	5 mb	1 mb				

01/2010 rrelation (abs. GWMF. vs abs.

2 mb -	-0.122	0.052	-0.150	-0.090	0.021
3 mb -	0.013	-0.015	-0.059	-0.031	-0.028
5 mb -	-0.290	-0.184	-0.089	0.088	-0.229
10 mb -	0.160	0.089	-0.088	-0.084	-0.142
30 mb -	0.053	0.014	0.374	0.071	0.036
70 mb -	-0.062	-0.014	0.184	0.050	0.186
125 mb -	-0.076	-0.036	0.276	-0.080	0.382
200 mb -	-0.288	-0.218	0.341	0.279	0.542
300 mb -	-0.020	-0.016	-0.091	0.567	0.102
350 mb -	-0.214	-0.131	0.037	0.145	0.284
	500 mb	300 mb	70 mb	5 mb	1 mb
	(17/	20	N R	
			s. GWM		s. dNBI
2 mb	0.790	0.496	0.438	0.448	0.802
3 mb	0.623	0.582	0.492	0.486	0.780
5 mb	0.622	0.685	0.612	0.585	0.729
10 mb	0.781	0.605	0.526	0.504	0.768
30 mb	0.676	0.734	0.636	0.553	0.689
70 mb	0.614	0.745	0.653	0.567	0.622
125 mb	0.772	0.849	0.842	0.671	0.560
200 mb	0.566	0.780	0.870	0.714	0.377
300 mb	0.643	0.612	0.702	0.732	0.669
350 mb	0.594	0 553	0.657	0.643	0.677

500 mb 300 mb 70 mb 5 mb

Correlation (abs. GWMF. vs abs. dNBE)									
2 mb -	0.707	0.859	0.770	0.220	-0.129				
3 mb -	0.709	0.830	0.047	0.305	-0.058				
5 mb -	0.716	0.931	6.855	0.293	-0.068				
10 mb -	0.667	0.944	0.855	0.321	-0.044				
30 mb -	0.706	0.928	6.844	0.277	-0.103				
70 mb -	0.651	0.927	0.042	0.349	-0.039				
125 mb -	0.647	0.831	0.060	0.364	-0.045				
200 mb -	0.645	0.847	6.074	0.314	-0.053				
300 mb -	0.654	0.928	0.892	0.513	0.168				
350 mb -	0.614	0.871	0.840	0.475	0.182				

06/2012

Correlation (abs. wind var. vs abs. dNB										
2 mb -	-0.134	0.005	-0.101	0.009	0.075	-0.04				
3 mb -	-0.089	0.164	0.034	0.134	0.197	0.04				
5 mb -	-0.068	0.224	0.143	0.135	0.105	-0.09				
10 mb -	-0.077	-0.014	0.078	0.235	0.141	-0.04				
30 mb -	-0.431	-0.299	-0.078	0.181	0.090	-0.07				
70 mb -	-0.316	-0.353	-0.214	0.090	0.056	-0.01				
125 mb -	-0.202	-0.163	-0.089	0.115	0.042	-0.03				
200 mb -	-0.154	-0.413	-0.181	0.115	0.027	-0.01				
300 mb -	-0.045	-0.186	0.097	0.196	0.071	0.19				
350 mb -	0.049	-0.061	0.203	0.159	0.072	0.24				
	80	84	88	92	95	100				
Co	Correlation 0.6/2.0.1									

				_			-			
2 mb -	-0.030	-0.091	-0.015	0.265	0.303	0.410				
3 mb -	0.044	-0.059	-0.058	0.222	0.286	0.411				
5 mb -	0.092	0.015	0.095	0.298	0.341	0.369				
10 mb -	0.180	0.076	0.127	0.330	0.418	0.417				
30 mb -	0.147	0.064	0.244	0.235	0.319	0.330				
70 mb -	0.029	-0.014	0.332	0.436	0.492	0.349				
125 mb -	-0.094	-0.040	0.332	0.424	0.460	0.274				
200 mb -	-0.142	-0.048	0.261	0.313	0.333	0.165				
300 mb -	0.082	0.214	0.533	0.544	0.522	0.288				
350 mb -	0.155	0.204	0.459	0.495	0.594	0.443				
	80	84	88	92	95	100 (ki	r0			
	Correlation as Contral as ANB									
2 m	0.1	31 0.1	42 0.1	6 0.0	-0.0	96 -0.11	6			
3 m	o - 0.1	44 0.1	42 0.2	03 0.1	25 -0.1	03 -0.0	54			
5 m	0.0	50 -0.0	75 0.1	25 0.1	58 0.0	0.01	3			
10 ml	0.0	61 -0.0	67 0.1	18 0.1	99 0.0	85 0.10	01			
30 ml	0.1	19 -0.1	12 0.2	65 0.1	54 0.0	0.03	8			
70 m	- 0.1	12 -0.1	94 0.0	64 0.0	58 0.1	34 0.10	9			
125 mi	o - 0.1	80 0.1	20 0.2	74 0.1	98 0.1	71 -0.19	90			
200 mi	o - 0.1	49 0.0	70 0.2	86 0.1	0.0	39 -0.01	13			
300 ml	0.1	57 -0.1	87 0.2	04 0.2	71 0.1	84 0.15	3			

12/2012

1.248 -0.205 0.151 0.232 0.237 0.227

100 (km

350 mb

			~	4	U	- 4	í
	Correl	ation (a	abs. wir	nd var.	vs abs	. dNB	E
2 mb	-0.29	1 -0.249	-0.204	-0.306	0.054	0.08	5
3 mb	-0.056	-0.127	-0.126	-0.045	0.100	0.15	,
5 mb	-0.041	1 -0.130	-0.165	-0.119	0.175	0.13	
10 mb	- 0.209	0.264	0.174	-0.075	-0.196	-0.21	,
30 mb	0.218	0.065	-0.216	-0.216	-0.074	-0.04	٥
70 mb	0.343	0.324	0.175	-0.209	-0.131	-0.05	3
125 mb	-0.348	8 -0.301	-0.505	-0.068	0.179	0.22	;
200 mb	0.124	0.191	0.078	0.272	0.110	0.14	1
300 mb	0.302	0.135	-0.049	-0.097	-0.238	-0.26	1
350 mb	0.372	0.246	0.027	-0.059	-0.230	-0.22	•
	80	84		92	95	100	0
	Correl	ation (bs. In	12	vas	. ONE	I
2 mb	0.448	0.455	0.446	0.151	0.148	-0.00	3
3 mb	0.605	0.491	0.306	-0.013	0.122	0.10	5
5 mb	0.117	0.406	-0.093	-0.304	-0.123	0.15	3
10 mb	0.507	0.355	-0.051	-0.101	-0.004	0.16	5
30 mb	-0.220	-0.137	0.060	0.175	-0.182	0.00	,
70 mb	-0.038	8 -0.073	-0.074	0.202	-0.078	0.04	'
125 mb	0.001	-0.034	-0.068	0.181	-0.077	0.14	,
200 mb	-0.212	-0.186	-0.125	0.075	-0.055	0.09	3
300 mb	-0.167	-0.077	-0.070	0.078	-0.081	-0.00	3
350 mb	-0.095	5 -0.013	-0.072	0.024	-0.140	-0.02	,
	80	84	88	92	96	100	0
c	orrelat	tion (b	.	1,2,	n.	NE	
2 mb -	-0.340	-0.186	0.009	0.376	0.234	0.027	ĺ
3 mb -	0.008	0.233	-0.164	0.178	0.188	0.138	
5 mb -	-0.441	-0.323	-0.166	-0.323	0.447	0.400	
10 mb -	-0.304	-0.096	0.039	-0.230	-0.431	0.623	
30 mb -	-0.247	-0.048	-0.074	-0.194	-0.140	-0.152	
70 mb -	-0.340	-0.125	-0.181	-0.318	0.226	0.174	

05/2012

c	Correla	tion (al	-	d var.	-	dNBE
2 mb -	-0.137	-0.000	0.070	0.114	0.262	0.291
3 mb -	-0.098	0.005	0.142	0.201	0.319	0.330
5 mb -	-0.001	0.158	0.247	0.253	0.322	0.297
10 mb -	-0.030	0.188	0.274	0.288	0.300	0.257
30 mb -	-0.049	0.086	0.168	0.266	0.278	0.239
70 mb -	0.239	0,445	0.529	0.568	0.573	0.549
125 mb -	0.279	0.478	0.481	0.513	0.596	0.575
200 mb -	0.521	0.612	0.648	0.556	0.376	0.292
300 mb -	0.194	0.306	0.359	0.182	0.128	0.182
350 mb -	0.183	0.273	0.267	-0.006	-0.095	0.012
	80	h	É/	9	ų ۲	10

	80	0)5	12	20	10
0	Correla	tion (al	bs. win	d var.	vs abs	dNB
2 mb -	-0.122	-0.021	0.327	0.377	0.249	0.261
3 mb -	-0.168	-0.015	0.368	0.470	0.335	0.348
5 mb -	-0.234	-0.008	0.335	0.366	0.200	0.220
omb -	-0.235	-0.003	0.385	0.451	0.255	0.275
omb -	-0.337	-0.050	0.397	0.406	0.168	0.222
omb -	-0.394	-0.200	0.088	0.143	-0.140	-0.073
Smb -	-0.216	-0.252	0.044	-0.018	-0.263	-0.20
omb -	0.002	-0.248	-0.048	-0.120	-0.312	-0.311
omb -	0.168	-0.120	0.057	0.018	-0.054	-0.063

350 mb - 0.045 -0.218 -0.032 -0.118 -0.222 -0.21 Correlation 0.5/2014

2 mb -	-0.445	-0.347	0.154	0.363	0.182	0.050
3 mb -	-0.485	-0.421	0.102	0.275	-0.012	-0.255
5 mb -	-0.549	-0.347	0.171	0.263	-0.137	-0.433
10 mb -	-0.577	-0.443	0.086	0.409	0.082	-0.429
30 mb -	-0.468	-0.558	-0.165	0.251	0.072	-0.416
70 mb -	-0.114	-0.173	0.014	0.103	-0.092	-0.490
25 mb -	0.193	0.222	0.082	-0.181	-0.178	-0.237
- dn 00	0.293	0.239	0.041	-0.224	-0.166	-0.192
- dn 00	0.215	-0.058	-0.078	-0.028	0.036	-0.186
60 mb -	0.266	-0.015	-0.088	-0.049	0.013	-0.152
	80	84	88	92	96	100 (k

11/2012

Correlation (abs. wind var. vs abs. dNBE)									
2 mb -	-0.106	0.015	-0.015	0.045	0.297	0.205	ĺ		
3 mb -	0.285	0.360	0.276	0.227	0.377	0.323	l		
5 mb -	-0.192	-0.049	0.216	0.353	0.277	0.217			
10 mb -	0.136	0.353	0.458	0.441	0.326	0.268			
30 mb -	-0.127	-0.141	-0.153	-0.079	-0.078	-0.231			
70 mb -	-0.077	-0.049	0.023	0.024	-0.120	-0.356			
125 mb -	-0.148	-0.207	-0.087	0.007	-0.055	-0.237			
200 mb -	-0.020	-0.102	-0.192	-0.194	-0.168	-0.258			
300 mb -	0.069	0.043	-0.066	-0.167	-0.307	-0.313			
350 mb -	0.066	0.040	-0.157	-0.271	-0.376	-0.337			
	80	84	1/	Z	U	100	5		
(Correla	ation (a	bs. win	d var.	vs abs	dNB	E)		
2 mb -	-0.202	-0.162	-0.205	-0.092	0.367	0.680			
3 mb -	-0.112	-0.080	-0.151	-0.027	0.342	0.643	l		
5 mb -	-0.110	0.105	-0.042	0.050	0.345	0.561			
10 mb -	-0.048	0.024	-0.135	-0.003	0.356	0.570	l		
30 mb -	0.045	0.182	-0.192	-0.010	0.441	0.326	l		
70 mb -	0.421	0.214	-0.237	-0.070	0.133	0.114			
125 mb -	0.394	0.136	-0.196	-0.137	-0.127	-0.118			
200 mb -	0.255	0.038	-0.242	-0.148	-0.004	0.016			
300 mb -	0.354	0.035	-0.183	-0.192	-0.180	-0.154	l		
350 mb -	0.380	0.096	-0.115	-0.242	-0.215	-0.147			
	80	1	1•/	2(12	m		
C	orrelati	on (ab	s. wind	var. vs	s abs. o	INBE	E.		
2 mb -	0.377	0.191	0.231 -	0.205 -	0.079 -	0.034			
3 mb -	0.261	0.201 -	0.214 -	0.229 -	0.049 -	0.011			
5 mb -	0.258	0.240 -	0.039 -	0.029	0.108 -	0.097			

00 mb	- 0.255	0.03	3 -0.24	2 -0.14	-0.004	0.01
00 mb	0.354	0.03	-0.18	3 -0.193	2 -0.18	-0.15
50 mb	0.380	0.09	-0.11	5 -0.24	2 -0.21	-0.14
	80	4	1.	19	0	19
					vs abs.	
	Juneia	ion (a	05. WIII	u vai.	vs aus.	UNDE
mb -	0.377	0.191	-0.231	-0.205	-0.079	-0.034
mb -	0.261	0.201	-0.214	-0.229	-0.049	-0.011
mb -	0.258	0.240	-0.039	-0.029	0.108	-0.097
mb -	0.281	0.294	0.017	-0.032	0.123	-0.070
mb -	0.203	0.245	0.014	-0.001	0.182	-0.010
mb -	0.224	0.249	-0.166	-0.249	-0.078	0.001

04/2012

Correlation (abs. wind var. vs abs. dNB									
2 mb -	0.026	0.263	0.386	0.301	0.185	-0.03			
3 mb -	-0.045	0.162	0.257	0.212	0.084	-0.13			
5 mb -	-0.154	0.073	0.229	0.175	-0.007	-0.175			
10 mb -	-0.081	0.245	0.216	0.127	-0.059	-0.193			
30 mb -	0.034	0.278	0.292	0.232	0.044	0.017			
70 mb -	-0.027	0.164	0.029	-0.034	-0.200	-0.247			
125 mb -	-0.043	0.161	0.308	0.263	0.148	0.012			
200 mb -	0.237	0.367	0.333	0.213	0.178	0.125			
300 mb -	-0.040	-0.379	-0.239	-0.209	-0.250	-0.050			
350 mb -	0.048	-0.195	-0.186	-0.115	-0.152	-0.07			
		-	-	-	_				
	80	n	A 1	2	n,	10			
04/2013									
Co	orrelatio	on (abs	s. wind	var. vs	s abs. o	INBE			

2 mb - -0.196 -0.025 0.052 -0.007 -0.109 -0.114 0.079 0.162 -0.053 -0.169 -0.079 -0.063 3 mb 5 mb 0.242 .0.101 .0.260 .0.265 .0.210 .0.058 0.004 0.137 0.226 -0.20

Correlation 0 4 2 0 5 1 1 5 0 1 1 5

		-		92		100 B	
350 mb -	0.387	0.102	-0.154	-0.250	0.160	0.233	
300 mb -	0.173	0.031	-0.324	-0.232	0.216	0.200	
200 mb -	0.085	0.037	-0.147	-0.203	-0.048	0.157	
125 mb -	0.245	0.195	-0.194	-0.216	-0.026	0.102	
70 mb -	0.132	0.200	-0.156	-0.268	0.050	0.102	
30 mb -	-0.158	-0.118	0.245	-0.021	-0.277	-0.265	
10 mb -	-0.246	0.008	0.084	0.015	0.038	-0.108	
5 mb -	-0.011	-0.012	0.255	0.147	-0.089	-0.046	
3 mb -	0.007	-0.077	0.269	0.139	-0.115	-0.038	
2 mb -	-0.217	-0.025	0.260	0.359	0.088	-0.028	

10/2012

	Correl	ation (abs. w	ind var	vs ab	s. dNB	
2 mb	0.203	8 0.11	1 0.15	7 0.220	0.543	8 0.675	l
3 mb	0.311	0.17	0.25	0.233	0.405	0.50	
5 mb	0.256	6 0.17	2 0.20	0.223	0.451	0.583	
10 mb	0.44	0.25	5 0.30	3 0.313	0.373	0.365	
30 mb	0.337	0.38	0.22	0.22	-0.13	8 -0.163	
70 mb	-0.00	1 0.26	8 0.18	1 0.146	-0.14	8 -0.10	
125 mb	-0.28	0.05	4 -0.00	9 0.128	0.110	-0.001	
200 mb	-0.26	0.37	5 0.49	8 0.481	0.370	0.145	
300 mb	-0.04	8 -0.07	6 0.17	7 0.381	0.341	7 0.158	
350 mb	-0.14	0.01	3 0.16	0.376	0.468	0.293	
	80	-	U	Z	U	100	
	Correl	ation (abs. w	ind var	vs ab	s. dNB	
2 mb	-0.02	7 0.18	4 0.00	2 0.153	0.353	3 0.258	
3 mb	0.083	8 0.09	4 0.02	5 0.100	0.180	0.170	
5 mb	0.300	0.22	1 0.14	0.013	-0.018	8 0.080	
10 mb -	0.233	0.05	0.19	5 0.055	0.078	0.094	
30 mb	0.27	0.09	7 0.22	1 0.040	0.078	8 0.082	
70 mb	0.28	0.05	2 0.26	9 0.133	0.15	1 0.160	
125 mb	0.285	0.15	2 0.17	0.215	0.228	0.083	
200 mb	0.06	0.05	5 0.19	5 0.364	0.39	0.064	
300 mb	0.176	0.15	3 0.21	5 0.307	0.307	7 0.086	
350 mb	0.200	6 0.16	7 0.19	0.344	0.271	0.035	
	80	1	n/	2	Ŋ۲		
c	orrela	tion (al	bs. win	d var. 1	vs abs.	dNBE	
2 mb -	-0.259	-0.044	0.110	0,149	0.302	0.549	
				0,114			
5 mb -	0.052	0.005	-0.024	0.079	0.228	0.298	
10 mb -				-0.026			
30 mb -	0.199	0.139	-0.080	-0.029	0.020	-0.016	
70 mb -	0.256	0.008	-0.275	-0.126	-0.036	-0.101	

03/2012

		_ v	9				
	Correl	ation (a	bs. wir	nd var.	vs abs	. dNBE)
2 mb	-0.001	-0.204	0.047	0.253	0.150	0.367	
3 mb	-0.232	0.090	0.313	-0.082	-0.062	-0.110	
5 mb	-0.318	-0.019	-0.043	-0.015	-0.010	0.025	
10 mb	- 0.123	0.203	0.240	0.075	-0.146	-0.212	
30 mb	0.035	-0.222	-0.118	-0.344	-0.231	-0.144	
70 mb	0.203	0.091	0.142	0.036	0.008	-0.049	
125 mb	- 0.107	-0.028	-0.073	-0.034	0.019	0.083	
dm 005	0.369	-0.186	-0.127	-0.107	-0.062	0.103	
300 mb	0.479	0.107	0.159	-0.007	-0.147	-0.211	
360 mb	0.204	0.054	0.005	-0.127	-0.245	-0.213	
	80	Ċ	2	5	Ô′	10	10
		ion (ab)
	orrela	ion (ab	s. wind	var. v	s abs. (UNDE)	
2 mb -	0.070	0.357	0.149	0.291	0.146 -	0.002	
3 mb -	-0.333	-0.201	0.287	0.447	0.450	0.306	
5 mb -	-0.190	-0.007	0.452	0.486	0.602	0.577	

350 r

2 mb

mb -	-0.33	-0.3	201 0	287	0.447	0.450	0.	306	
mb -	-0.19	-0.0	107	452	0.486	0.602	0	577	
mb -	-0.09	0,4	133 0	.324	0.219	0.027	-0	106	
mb -	-0.33	-0.3	29 0	.347	0.571	0.448	0.	258	
mb -	0.173	0.0	155 -0	.101	-0.127	-0.085	- 0	.141	
mb -	0.207	0.4	197 0	214	0.007	0.202	0.	223	
mb -	0.090	0.3	24 0	.016	-0.310	-0.237	-0	.149	
mb -	-0.09	0.0	66 0	.513	0.312	0.136	0.	033	
mb -	0.038	0.5	06 0	561	0.316	0.144	0.	060	
	80	8	•	88	74	96	,	00 (km)	
	Cor	relati						dNB	=)
2 mi	o - 0.	93	-0.065	0.04	5 0.05	56 0.	003	-0.158	
3 m	o0.	027	-0.374	0.14	7 0.2	73 0.	237	0.230	

			_	_	_	_
350 mb -	-0.073		-0.037			
300 mb -	-0.015	-0.252	-0.132	0.056	0.092	0.30
200 mb -	0.025	-0.140	-0.249	-0.042	0.028	0.15
125 mb -	0.048	-0.071	-0.120	-0.185	-0.186	-0.04
70 mb -	0.278	-0.013	-0.429	-0.367	-0.322	-0.20
30 mb -	0.334	0.365	0.355	0.019	-0.055	-0.25
10 mb -	-0.140	-0.093	0.029	0.187	0.280	0.24
5 mb -	-0.108	0.018	-0.107	0.040	0.321	0.07
3 mb -	-0.027	-0.374	0.147	0.273	0.237	0.23
2 mb -	0.093	-0.065	0.045	0.056	0.003	-0.15

09/2012

	Correla	tion (a	bs. win	d var.	vs abs	. dNBE	E)
2 mb	0.190	0.178	0.110	0.045	0.132	0.163	
3 mb	0.213	0.129	0.035	0.110	0.258	0.214	
5 mb	0.399	0.162	0.180	0.303	0.422	0.209	
10 mb	0.568	0.337	0.369	0.519	0.596	0.291	
30 mb	0.544	0.359	0.493	0.585	0.608	0.210	
70 mb	0,491	0.330	0.448	0.569	0.586	0.160	
125 mb	0.413	0.317	0,461	0.660	0.656	0.212	
200 mb	0.511	0.315	0.418	0.599	0.603	0.181	
300 mb	0.452	0.306	0.414	0.605	0.575	0.157	
350 mb	0,390	0.289	0.409	1000	0.556	0,156	
	80	U	y	12	6	00.0	
	Correla	tion (a	bs. win	d var.	vs abs	. dNB	E)
2 mb	0.347	0.457	0.427	0.405	0.236	0.200	
3 mb	0.294	0.452	0.429	0.387	0.196	0.165	
5 mb	0.291	0.496	0.453	0.392	0.167	-0.015	
10 mb	0.352	0.312	0.218	0.158	0.070	-0.053	
30 mb	0.304	0.212	0.159	0.133	0.011	-0.129	
70 mb	0.291	0.290	0.265	0.280	0.006	-0.182	
125 mb	0.320	0.111	0.109	0.190	-0.072	-0.163	
200 mb	-0.061	-0.114	0.052	0.348	0.271	0.015	
300 mb	0.201	0.019	0.063	0.192	0.039	-0.193	
350 mb	0.076	-0.013	0.062	0.127	-0.050	-0.181	
	80	A	Q/	9	n,	100	n)
c	orrelati	on (ab:	•	_	U s abs.	dNBE)	
2 mb -	-0.243	0.105	0.065	0.209	0.226	-0.137	
3 mb -	-0.224	0.112 -	0.146 -	0.190	0.165	-0.095	
5 mb -	-0.224	0.122 •	0.116	0.151	0.109	-0.030	
10 mb -	-0.323 -	0.207	0.081 -	0.067	0.007	0.126	
	-0.303					_	
70 mb -	-0.264	0.043	0.011 -	0.009	0.119	0.202	

02/2042

				D	2	Ľ	2	C)^	12				
	c	orrel	atic	n (a	bs. v	rind	i var	vs	abs	. dN				
2 mb														
3 mb														
5 mb					-0.13	- 24			0.265	-0.18				
10 mb		0.028	-	.019	-0.1	52	0.139	•	0.157	0.10				
30 mb									0.104	0.21				
70 mb					-0.0					0.13				
125 mb	1	0.271												
200 mb	н	0.050			-0.2	_								
300 mb							-0.19							
350 mb		-	0	369	-0.10	32	0.025	•	0.022	-				
02/2013														
Correlation (abs. wind var. vs abs. dNB														
2 mb -	-	_		_	0.149	_		_	_	_				
- dn E	-0	.333	-0.3	801	0.287	0.	.447	0.4	150	0.306				
5 mb -	-0	.190	-0.0	107	0.452	0.	485		502	0.577				
		.099			0.324		219			-0.106				
30 mb -	-0	.330	-0.2	29	0.347	0	.571	0.4	148	0.258				
70 mb -	0.	172	0.0	55	0.101	-0	.127	-0.0	085	-0.141				
125 mb -	0.	207	0.4		0.214									
200 mb -	0.	090	0.3	24	0.016	-0	.310	-0.3	237	-0.149				
300 mb -				- 0	0.513									
350 mb -	0.	038	0.2	06	0.561	o.	.316	0.1	144	0.060				
		80	8		88		92	9	6	100 (
	0	Corre	lati	O	2		2		sab	s di				
2 mž		0.07	3	0.07	9 -0.1	129	-0.0	55	-0.18	4 -0.3				
					8 -0.1									
					5 0.3									
10 mb		0.13		0.23	0.1	154	-0.0	55	-0.13	7 -0.:				
30 mt		0.20	12	-0.02	3 0.1	191	0.05	96	0.18	2 0.1				
70 mt	, -	0.06	i0	-0.31	B -0.3	205	-0.2	20	-0.09	7 -0.0				
125 mb		0.03	13	0.25	9 -0.3	298	-0.1	37	-0.01	4 0.0				
200 mž		0.03	21	0.08	7 0.0	076	0.11	14	0.11	3 0.1				
300 mb					0.1				0.07	9 -0.0				
350 mb	• -	-0.1	71	0.03	0 -0.3	242	-0.13	24	0.05	5 0.0				
		80		84	8	8	92		96	10				
			ſ	•)	-	57	h	4	2				
					3/									
			-	· ·	bs. v	_		_		_				
2 mb														
3 mb														
5 mb														
10 mb	ŀ	0.187	0	.079	-0.04	13	-0.23	4	0.145	0.01				

30 mb

70 mb

125 mb

200 mb

300 mb

350 m

2 mb -3 mb -

5 mb 0.375 -0.204

10 mb

30 mb 0 221 -0 195 70 mb 0 309 -0 258 125 mb .336 -0.22 200 mb 0.976 -0.94 300 mb 0 252 -0 176 350 mb

3 mb

5 mb -

Correlation (abs

2 mb - -0.157 -0.019 -0.117

10 mb - -0.078 0.026 -0.198 -0.333 -0.328 -0.25

30 mb - -0.013 0.048 -0.229 -0.377 -0.365 -0.321 70 mb - 0.000 0.059 -0.208 -0.339 -0.347 -0.33

0.021 -0.278 -0.198

08/2013

rrelation (abs. wind var. vs abs. dNBE

-0.357 -0.169 0.118 0.562 0.602 0.57

-0.369 -0.216 0.121 0.605 0.658 0.60

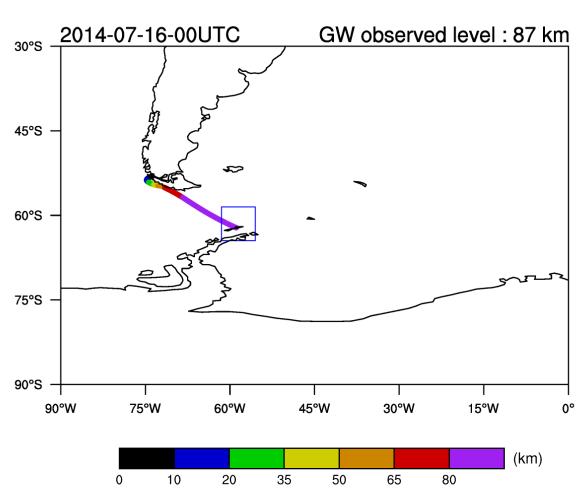
-0.316 -0.190 0.173 0.572 0.648 0.59-

08/2014

d var. vs abs. dNBE

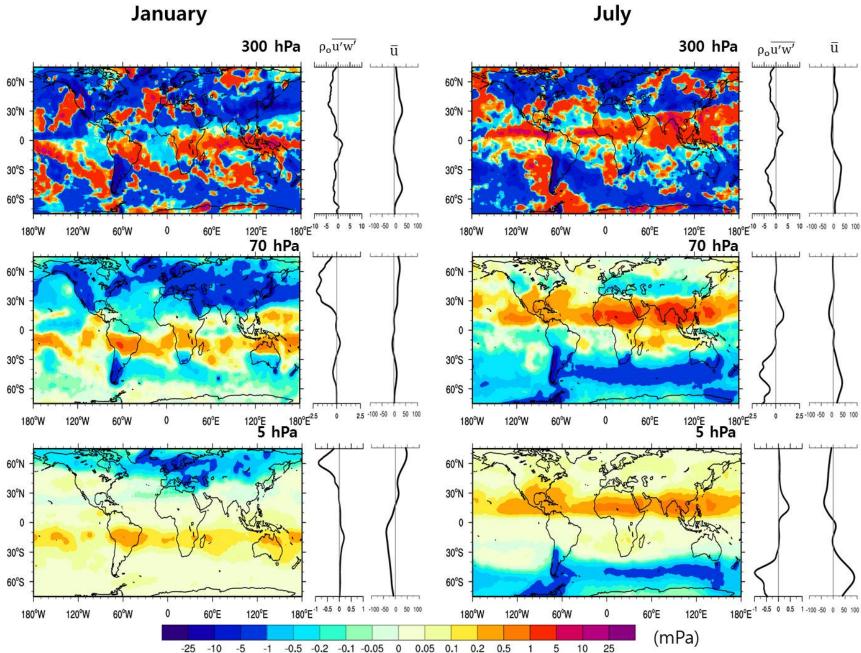
0.310 0.040 -0.119 -0.274 -0.195 -0.09

				0) '	1	1	2	1	0	1		>
	C	orrel	ati	on (·			l var.	v	s ab	s. 1	dNB	E)
2 mb	-	0.146	8	0.43	5	0.31	7	0.142		0.091		0.060	•
3 mb	-	0.00	3	0.29	1	0.37		0.396		0.371	Ĭ.	0.078	
5 mb	-	0.139		0.40		0.41	•	0.405		0.387		0.259	
0 mb	-	0.143		0.35	1	0.32	5	0.202		0.231	Î	0.100	,
dm 0	-	0.153		0.17	5	0.016	5	0.057		0.190		0.179	
dm 0'	-	0.067	,	0.26	1	0.31:	2	0.457		0.542		0.365	
5 mb	-	0.103		0.19	5	0.25	3	0.261	Ĩ	0.258	Î	0.188	ĭ
i0 mb	-	0.008		0.06	1	-0.00	4	-0.071		0.075		0.027	,
i0 mb	-	0.29		0.28		0.45	,	-0.268		0.153		0.059	
i0 mb	_	0.20	, .	0.27		0.42		-0.230	,	0.141		0.065	5
	-	80		~	2	88	1	~	•	96	-	5	(m
				U	1		5	Z	L	ľ	l	3	5
0	Cor	rela	tio	n (a	bs	win	d	var. 1	/S	abs.	d	NBE)
mb -	-0	.011	-0	.226	0	.007	0	.250	0	.246	0	.219	
mb -	-0	.167	-0	294	0	.036	0	.267	0	.161	0	.034	
mb -	-0	168	-0	228	-0	.095	0	.266	0	155	0	.019	
mb -	-0	.121	-0	.194	-0	.057	•	.051	0	.041	0	.006	
mb -	0.	198	0.	.108	-0	.106	-	.048	0	.241	0	.161	
mb -	0.	183	0.	205	0	.154	-	0.161	-0	.077	-0	.044	
mb -	-0	.145	0	.161	0	.085	0	.144	0	.192	0	.063	
mb -	-0	.236	-0	.127	-0	.065	0	.045	0	.086	-0	.060	
mb -	-0	105	-0	.048	-0	.105	0	.204	0	.109	0	.029	
mb -	-0	.019	-0	.071	-0	.295		.057	0	.036	0	.019	
		80		84		. 88		g2 .	_	95_	,	00 (*)	m)
	c	Corre	ala	tic)	bs	vi	2	ļ	O	1 05	IN	4
2 mb	, 4	-0.1	18	0.0	01	-0.1	67	-0.2	28	-0.00	2	0.11	11
3 mt	, _	-0.14	10	-0.0		-0.1		-0.0		0.26		0.35	
5 mb		0.15		-0.1		-0.0		0.01		0.22		0.28	
10 mb		0.12		0.0		0.1		0.07		0.14		0.05	
30 mt		0.20		-0.3		-0.2		-0.07		0.06		-0.00	
70 mt		-0.2	-	-0.1		-0.0		-0.07		-0.1		-0.27	
25 mb		-0.2		0.0		0.0		0.15		0.00		-0.2	
tm 001	• -	0.1	1	0.0	48	-0.2	38	-0.04	\$5	-0.03	r5	-0.05	59

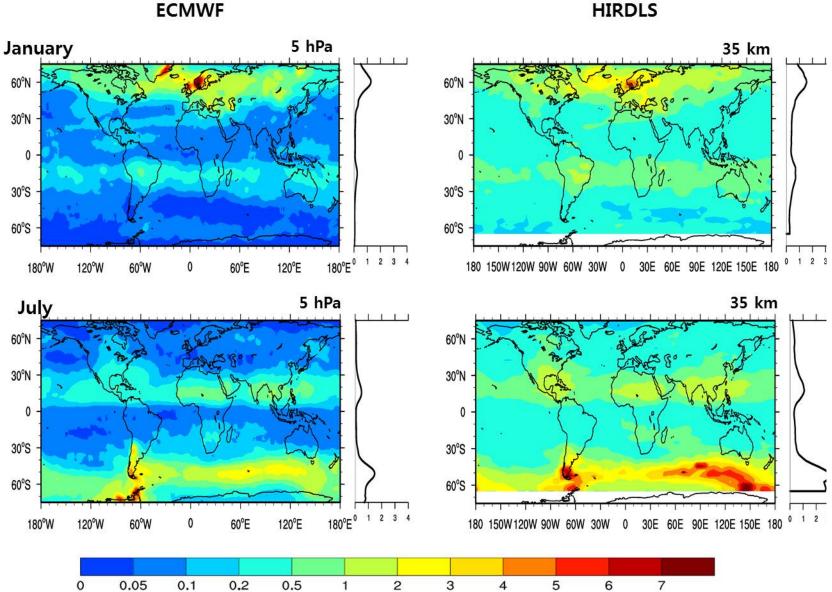

84 88 92 95 100 (km)

309 mb - 0.345 0.140 0.035 -0.058 -0.382 -0.353

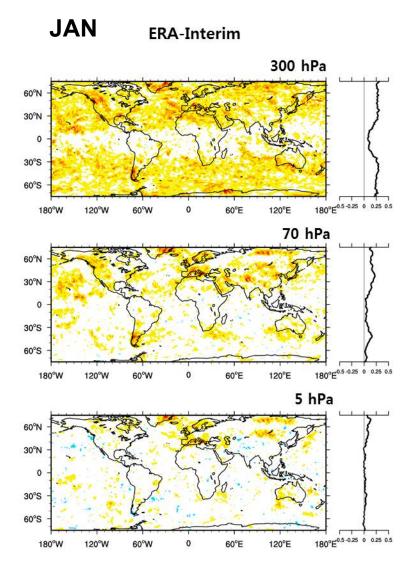
350 mb - 0.203 0.069 -0.039 -0.164 -0.399 -0.321

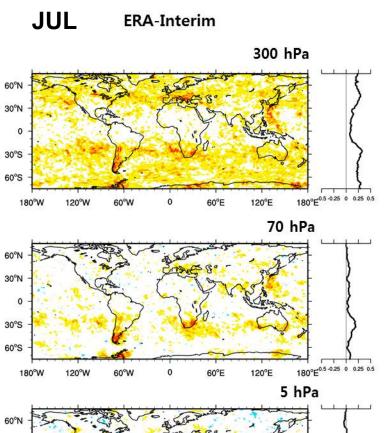


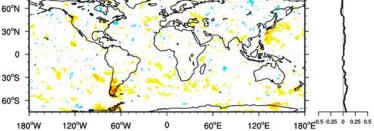
3-D ray-tracing result


Ray-termination location

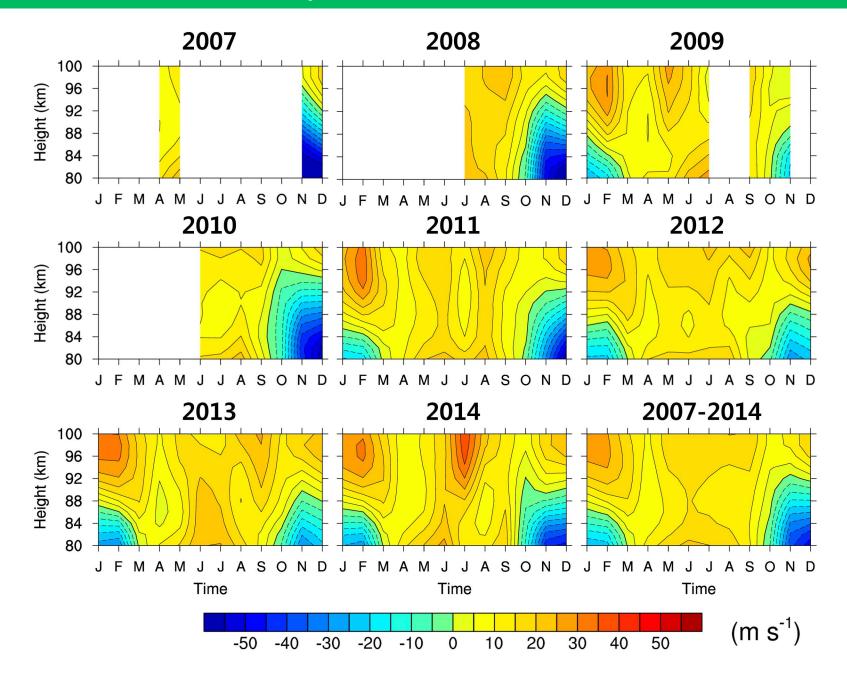
Zonal GWMF at different altitude

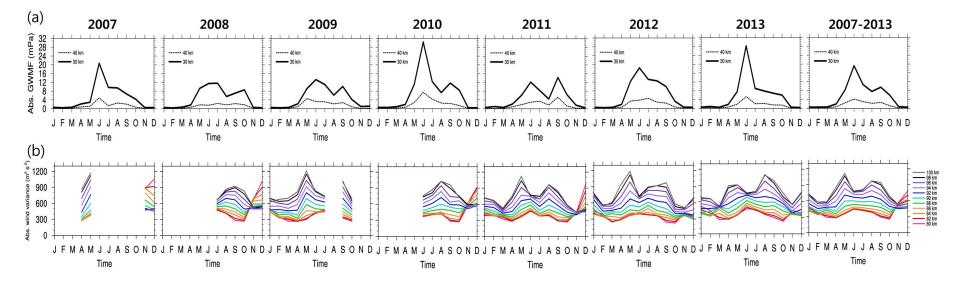

-10 -0.5 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.5 5 10 -5 -1 0 1

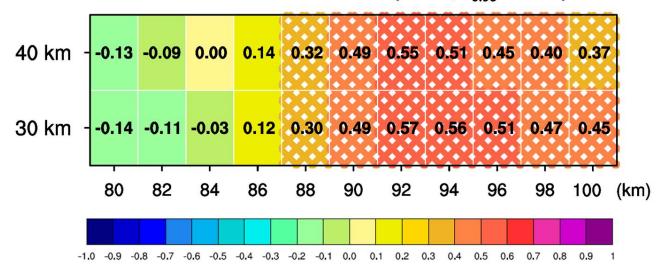

Global distribution of |GWMF| (H-ECMWF vs HIR인)



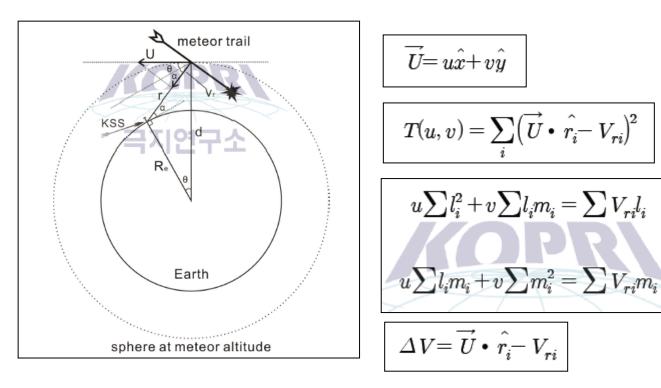
HIRDLS


Correlation (zonal GWMF & |△NBE|

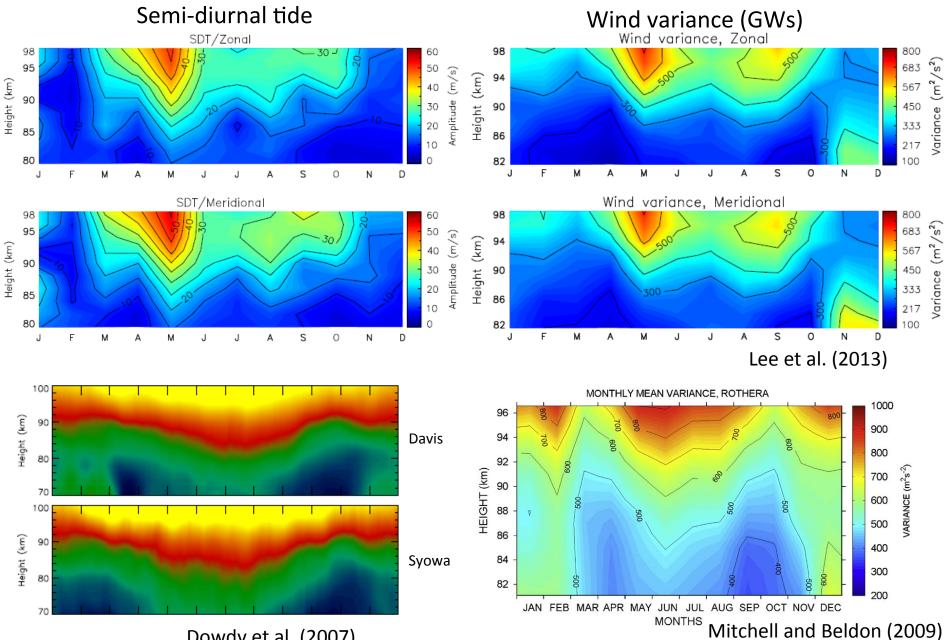



Zonal wind observed by meteor radar at KSS

Correlation (|GWMF| from HIRDLS vs horiz. wind var.]



|GWMF| (SABER) vs horizontal wind var. Jun 2010-Dec 2013 (N=43, r_{0.95}=0.301)

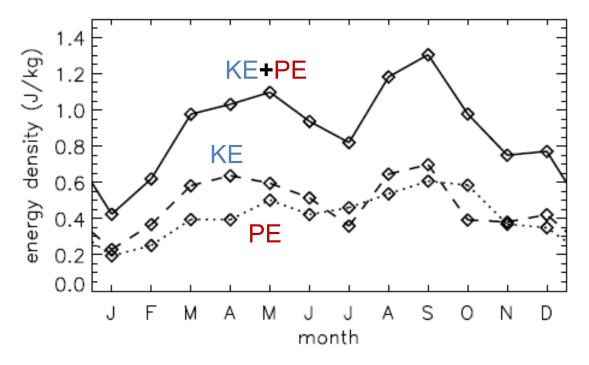

Analysis of meteor radar data

The horizontal winds are determined from radial velocities of meteor echoes within a height-time sector of 2 km and 1 h from 78 km to 100 km. The radial velocity is determined from at least six echoes in each height-time sector by u sing the least squares method and the meteor echoes used for this analysis w ere selected only when the absolute difference between observed and project ed radial velocities is less than 25 ms⁻¹ (Holdsworth et al., 2004).

➔ These height-time ave raged winds represent on ly the large-scale atmosp heric motions such as tid es, planetary waves.

Motivation

Dowdy et al. (2007)


SKiYMET meteor radar in Rothera station

<u>SKiYMET meteor radar</u>

- installed in Rothera, Antarctica (68°S, 68°W) in February 2005
- using data from February 2005 to December 2008.
- record the radial drifts of individual meteor trails \rightarrow large scale winds of the MLT.
- height and time resolution of ~2 km and 2 hour
- variance of the horizontal velocities \rightarrow a proxy for gravity wave activity $u \uparrow 2 + v \uparrow (\frac{1}{2})$ orizontal wavelengths of up to ~400 km and periods up to ~3 hours)

Moffat-Griffin et al. (2011, JGR)

I. Energy

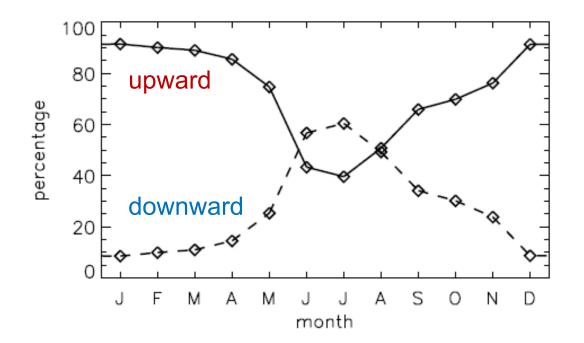
Figure 5. Monthly mean density of kinetic (dashed line) and potential (d otted line) gravity wave energy. Total energy per unit mass (the sum of th e kinetic and potential energy density) is shown with a solid line.

clear seasonal variation

KE : 0.22 J/kg in summer
0.69 J/kg in spring

PE : 0.19 J/kg in summer
0.60 J/kg in spring

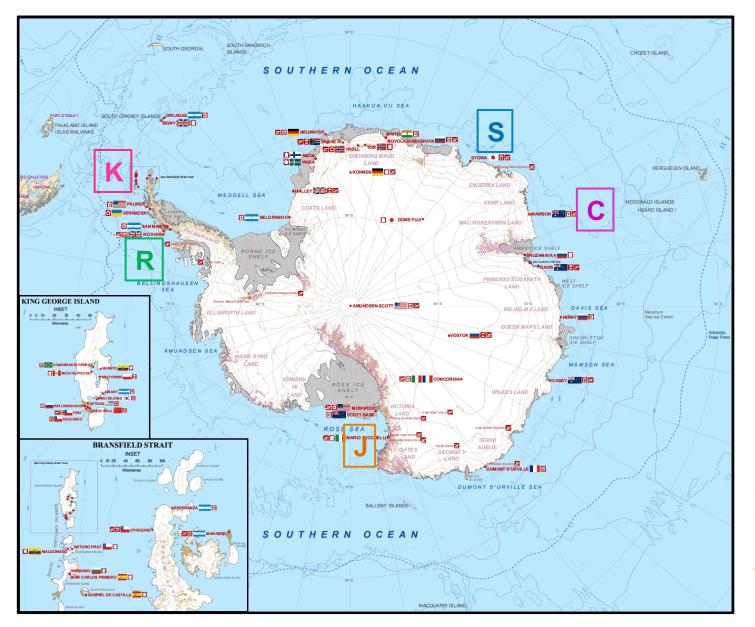
peak to a similar value in


September, the spring equinox

(consistent with other radiosonde results from other stations)

 → lower peak in both around April/May
 (Yoshiki and Sato [2000] do not s how the clear increase in energy after the austral autumn equinox)

Moffat-Griffin et al. (2011, JGR)


2.1. Vertical Propagation Direction

- strong seasonal variation
- Sep.-May : upward propagation
- winter : downward propagation
- Yoshiki and Sato, [2000] : domi nance of upward propagating w aves all year round. (downward max. ~40% in Jul.-Aug.)

Figure 6. Percentage of upward and downward propagating gravity wav es between 15 and 22 km for each month. The upward propagating wave s are represented by the solid line; the downward propagating waves are represented by the dashed line.

Research station in the Antarctic

Rothera (67°S, 68°W) Syowa (69°S, 39°E) Casey (66°S, 110°E) KSS (62°S, 58°W) JBS (74°S, 164°E)