Characteristics of gravity waves from convection using idealized model simulations

Claudia Stephan¹ Joan Alexander² Jadwiga Richter³ Michael Hedlin⁴ Catherine de Groot-Hedlin⁴ Lars Hoffmann⁵

¹University of Reading, UK ²NWRA, Boulder, CO ³NCAR, Boulder, CO ⁴U.C. San Diego, CA ⁵Juelich, Germany

Gravity waves from convection impact weather & climate on many scales

Simulated surface pressure perturbations from idealized model. Convectively-generated GWs interact with active convection (red).

Stratosphere

Convectively-generated GWs in the stratosphere observed by the AIRS satellite.

Global circulation

Seasonal descent of the zero zonal mean wind line at 61.25 S in the MetUM. Scaife et al. (2002)

Idealized modeling approach

Why develop an idealized model ?

Cloud-resolving model:

- Convective cells are not in the right place at the right time
- No direct observational validation of local/instantaneous GW amplitudes possible
- These matter: turbulence, mixing, breaking levels

Run Idealized Model forced with Q(x,y,z,t)

Idealized model:

- Compare to surface GW observations
- Compare to satellite GW observations
- Inform GCM GW drag parameterizations
- Disentangle complex processes

Full-Physics Model

We need a full-physics model that generates realistic heating and realistic waves!

	$15 \mathrm{km}$		$3 \mathrm{km}$ and $1 \mathrm{km}$	
Run	CU	PBL	MP	PBL
MOR I	\mathbf{KF}	YSU	MOR	YSU
MOR II	BMJ	MYJ	MOR	MYJ
MOR III	$\mathbf{G3}$	YSU	MOR	YSU
WSM6 I	\mathbf{KF}	YSU	WSM6	YSU
WSM6 II	BMJ	MYJ	WSM6	MYJ
WSM6 III	$\mathbf{G3}$	MYJ	WSM6	MYJ
WDM6 I	\mathbf{KF}	YSU	WDM6	YSU
WDM6 II	BMJ	MYJ	WDM6	MYJ
WDM6 III	$\mathbf{G3}$	YSU	WDM6	YSU
MY I	\mathbf{KF}	YSU	MY	YSU
MY III	$\mathbf{G3}$	YSU	MY	YSU
TOM I	\mathbf{KF}	YSU	TOM	YSU
TOM II	BMJ	MYJ	TOM	MYJ
TOM III	$\mathbf{G3}$	MYJ	TOM	MYJ

Potential problem:

Many physics schemes! Many hydrometeor distributions!

How different will the heating distributions be? How does this affect the waves?

Full-Physics Model

Results from ensemble runs:

Microphysics scheme strongly affects hydrometeor distributions <u>But:</u> The average heating profiles are relatively similar

Results from ensemble runs:

Microphysics scheme strongly affects hydrometeor distributions <u>But:</u> The average heating profiles are relatively similar

Full-Physics Model

We need a full-physics model that generates realistic heating and realistic waves!

	$15 \mathrm{km}$		$3 \mathrm{km} \mathrm{and} 1 \mathrm{km}$	
Run	CU	PBL	MP	PBL
MOR I	KF	YSU	MOR	YSU
MOR II	BMJ	MYJ	MOR	MYJ
MOR III	G3	YSU	MOR	YSU
WSM6 I	\mathbf{KF}	YSU	WSM6	YSU
WSM6 II	BMJ	MYJ	WSM6	MYJ
WSM6 III	G3	MYJ	WSM6	MYJ
WDM6 I	\mathbf{KF}	YSU	WDM6	YSU
WDM6 II	BMJ	MYJ	WDM6	MYJ
WDM6 III	G3	YSU	WDM6	YSU
MY I	\mathbf{KF}	YSU	MY	YSU
MY III	G3	YSU	MY	YSU
TOM I	\mathbf{KF}	YSU	TOM	YSU
TOM II	BMJ	MYJ	TOM	MYJ
TOM III	$\mathbf{G3}$	MYJ	TOM	MYJ

Momentum flux spectra of GWs above simulated storms are relatively insensitive to the choice of microphysics scheme **Time-mean, large-area average properties are robust**

But are the wave amplitudes realistic?

Heating algorithm

- Converts 4 km x 4 km 10 min precip. rates (x,y,t) to vertical profile of Q(x,y,t,z)
- Derived from full-physics simulations
- Implicitly includes: advection, evaporation and ice-phase processes

Idealized model forced with NEXRAD obs.

Run Idealized Model forced with Q(x,y,z,t)

Idealized model snapshot

Radar precipitation (colors) and wave vertical velocities (shades of gray)

Idealized model: Validation

Idealized model reproduces spectra of full-phys. model...

Idealized model: Validation

Idealized model reproduces spectra of full-phys. model...

...and satellite observations with correct amplitudes!

Impacts on the stratosphere

Can this model inform GWD parameterizations for GCMs?

- Key parameters: local/instantaneous amplitudes
 - Tied to strength and depth of latent heating
- Even in most advanced parameterizations these are unresolved

Impacts on the stratosphere

Can this model inform GWD parameterizations for GCMs?

- Key parameters: local/instantaneous amplitudes
 - Tied to strength and depth of latent heating
- Even in most advanced parameterizations these are unresolved

Our simulations:

June 2014: Continental US 4 km resolution; 65 km top

Based on observed precipitation

Split up into 10 domains & 24 h runs with 1d-initialization

Towards continental scale simulations

We only have *hourly* 4 km x 4 km data available (NCEP Stage IV)

m = P10/P60, where $0 \le P10 \le P60$ and $0 \le m \le 1$

$$P(m|P60) = \frac{1}{m\sigma\sqrt{2\pi}} e^{\frac{-(\ln(m)-\mu)^2}{2\sigma^2}}$$

category:	0 < P60 < 10	$10 \le P60 < 20$	$20 \le P60 < 30$	$30 \le P60 < 40$
ν	0.58	0.33	0.23	0.15
μ	-1.29	-1.76	-1.86	-1.90
σ	0.97	0.98	0.96	0.88

Precipitation downscaling: Validation

✓ Precipitation algorithm reproduces 10 min 4 km x 4 km PDFs from hourly values

Precipitation downscaling: Validation

Precipitation algorithm reproduces 10 min 4 km x 4 km PDFs from hourly values
Is this good enough? Will the sub-hourly distribution change the GW spectra?

We tested this in simulations

Lognormality

Lognormality

Self-similarity

WRF simulation, Antarctica

Stochastic parameterization

De la Camara et al., 2014

GWD in WRF versus MERRA

CAM source parameterization

Beres et al., 2005 parameterization

- Tied to model convective latent heating
- Magnitude of heating is uncertain
- Assumes convective fraction of 5%

CAM source parameterization

Beres et al., 2005 parameterization

- Tied to model convective latent heating
- Magnitude of heating is uncertain
- Assumes convective fraction of 5%

Parameterization vs WRF

- Input to parameterization: parameters of simulated heating
- Area-mean time-average: good performance

GWD in WRF, CAM and MERRA

This table shows:

For the area covered by WRF domains: The simulated wave drag x 0.16 in units of m/s/day averaged over equally-spaced pressure levels

pressure range:	100 - 10 hPa	10 - 1 hPa	1-0.4 hPa
WRF gwd	-0.072	-0.156	0.639
CAM conv. gwd	-0.003	-0.014	0.044
CAM oro. gwd	-0.009	< 0.001	0.001
CAM fro. gwd	-0.008	-0.035	-0.030
CAM tot. gwd	-0.019	-0.048	0.015
MER gwd	-0.009	-0.029	0.025
MER gwd+ana	-0.052	-0.037	-0.183

GWD in WRF, CAM and MERRA

This table shows:

For the area covered by WRF domains: The simulated wave drag x 0.16 in units of m/s/day averaged over equally-spaced pressure levels

pressure range:	$100-10~\mathrm{hPa}$	10 - 1 hPa	1-0.4 hPa
WRF gwd	-0.072	-0.156	0.639
CAM conv. gwd	-0.003	-0.014	0.044
CAM oro. gwd	-0.009	< 0.001	0.001
CAM fro. gwd	-0.008	-0.035	-0.030
CAM tot. gwd	-0.019	-0.048	0.015
MER gwd	-0.009	-0.029	0.025
MER gwd+ana	-0.052	-0.037	-0.183

Things to note:

- WRF has larger forces at 100-10 hPa than MERRA and CAM
- Conv.-generated GWs can have large amplitudes \rightarrow break low
- Could be improved: Use precip. downscaling instead of 5% assumption

Back to the earth

Can we identify the sources of waves observed by the US Transportable Array?

Case study using the idealized model: Compare simulated waves in the troposphere to surface observations

Model versus surface observations

Model versus surface observations

- Times series of model predictions and recorded data at locations of stations in the Transportable Array
- Precipitation is shown in red
- 1 deg longitude = 300 Pa

Summary

- New modeling approach: Idealized WRF model forced with heating/cooling
- Observationally validated with satellite and surface measurements
- Momentum flux spectra are characterized by universal lognormal distributions with long tails
- Neither constant- nor variable-source parameterizations include enough high-amplitude waves
- Strong and highly intermittent forces at 100 hPa-60 hPa are not correctly represented in GCMs
- This can be fixed: Combine Beres parameterization with a stochastic approach
- > This model can perform well close to the surface
- More useful applications: wave-convection interactions, turbulence, ?

Precipitation downscaling: Validation

Is this good enough? Will the sub-hourly distribution change the GW spectra?

Precipitation downscaling: Validation

How about local amplitudes?

