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The earliest MW studies employed balloons and gliders in N. Africa and Europe   
    (Queney, 1936a,b; Kűttner, 1938, 1939; Manley, 1945) 
 
The Sierra Wave Project (1951-2 and 1955) 
  

 - 1951-2 phase used only gliders, 1955 phase also employed powered aircraft 
 - led to key theoretical advances (Queney, 1947; Scorer, 1949; Long, 1953, 1955) 

 
Mountain wave studies over the Rockies – (Lilly, Kuettner, and colleagues, 1968-1982) 
 

 - NCAR, other aircraft, new in-situ instrumentation, vertical profiling 
 
Many more recent studies used research and commercial aircraft (ALPEX, FASTEX, 

 GASP, MAP, PYREX, SOLVE, T-REX, others) 
 
 
 
 
 

A long history of airborne mountain wave studies 
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 - NCAR, other aircraft, new in-situ instrumentation, vertical profiling 
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 GASP, MAP, PYREX, SOLVE, T-REX, others) 
 
 
 
But new satellite & ground-based  
data also revealed MW penetration  
to much higher altitudes 
 
Eckermann and Preusse (1999), 
Smith et al. (2009)  
 
 
 

A long history of airborne mountain wave studies 

OH airglow ~87 km 



DEEPWAVE plan – characterize Gravity Wave propagation  
and dynamics from their sources to regions of dissipation 

 

 - airborne & ground-based measurements over major source "hotspot"         

NSF/NCAR Gulfstream V (GV)  DLR Falcon  



GV sodium and UV lidars 
 
Na lidar: ~0.2 W & 9.8 W beams 
   – ρNa(z) and T(z) ~75-105 km 
UV lidar: ~5 W pulsed   
  – densities  & temperatures 

 ~20-60 km 

AMTM 

Wing 
cameras 

(2) 

Advanced Mesosphere Temperature 
Mapper & "Wing" cameras 

- AMTM: vertical viewing, T'(x,y) along track 
    - IR Wing cameras to achieve ~900 km  
         cross-track imaging of GWs at ~85 km 



DEEPWAVE also employed 
extensive GB instrumentation 

primary 
instrumentation 

on NZ South Island 
 
 

 also new Rayleigh 
lidar and meteor 

radar on Tasmania 
specifically to 

support 
DEEPWAVE 
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GV  Rayleigh  lidar  !’(x,z),  T’(x,z)  ~20-60+ km  

  GV AMTM               T’(x,y)                ~87 km  

DEEPWAVE and correlative  measurement capabilities   

GV sodium lidar w(x,z) ~15-30 km  

radiosondes               radiosondes 

GV in-situ V,T           MTP T’(x,z) ~8-20 km dropsondes 
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DEEPWAVE measurement capabilities 



DEEPWAVE Flight Tracks 
 

- multiple GV and Falcon flights targeted mountain waves over NZ,  
Tasmania, and Southern Ocean islands 

 
-  other flights targeted jet stream, frontal, and convective sources  

Tasmania 

New Zealand 
South Island 



South Island average GWD – 6-km WRF model 
 

RF12,  16,      RF22 

"deep" events 

(Stratospheric MW  
breaking events) 

(very weak  
MW forcing  

– VERY strong 
responses  
in the MLT) 

6-km WRF forecast of OGWD  
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Two flight legs over Mt. Aspiring: 
  

z=12.2 km;  z=13.7 km  

RF12 (29 June) – strong cross-mountain flow 
- weak stratospheric flow, breaking at GV flight altitudes 
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Two flight legs over Mt. Aspiring: 

Leg 14: z=12.2 km  
Leg 22: z=13.7 km  

RF12 – GV flight-level data along Mt. Cook flight track 
- breaking at GV flight altitudes 

w 

u 

           altitude 

u’ > -U, => overturning 

λh ~70 km 
λh ~5-15 km 

WRF 6-km model: 
 

strong tropospheric response, 
MW breaking in lower stratosphere  

 



RF12 – MWs seen at flight level extend into the thermosphere 
 

- apparent propagating MWs at λh ~20-70 km 
     over terrain 
 
- trapped lee waves at λh ~5-15 km over  

 and leeward of terrain 
 
- breaking in stratosphere reduces MW amplitudes 
 
- further breaking in the mesosphere 
 
- influences extend into the thermosphere   



RF16 (4 July) – strong MW forcing,  
weak stratospheric winds 
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Rayleigh lidar T' (x,z), ±15 K, RF seg. 3 

WRF forecast:   

- strong MW forcing at scales ~30+ km scales 
- MW breaking in weak stratospheric flow 
- significant secondary GWs  ~25-30 km 

Rayleigh lidar reveals:   
- weak GWs at ~20-30 km 
- both westward and eastward-propagation 

 over terrain > 25 km 
- amplitudes increase rapidly above ~30 km  
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WRF  w(x,z) – 2-km resol.   



RF16 – strong strat. winds enable penetration to high alts. 
- λh ~30-100 km MWs with large-amps./MFs  in the MLT 

100 km 



     RF22 (13 July) – weak  forcing 
 
- predicted very weak MWs  in WRF and      
          other models at lower altitudes 
- flight-level measurements reveal   
          λh~30-60, 120-250 km  
 
- Rayleigh lidar shows ~240-km MW 
          growing strongly in altitude, 
          λz increasing as U(z) increases, 
          addit. GWs >50 km 
 
- ECMWF captures  
     λh~240 km MW,   
     under-estimates  
     T' by ~2-3 times 



             RF22 – MLT responses 
- AMTM/IR Cam Keogram show T' ~10-25 K,   
          λh ~30-240 km 
- ρNa/ρ show  
     - MWs have δz ~1-3 km, => λz ~15-20 km 
     - secondary GWs above breaking region 

apparent MW 
breaking 

- λh ~25-80 km dominant in MLT 

Δz >8 km 
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 RF22 – UKMO UM 2-km  
  mesoscale simulation  
   to 80 km (S. Vosper) 
   
 
- MWs at 58 km have  
     - u' ~25 m/s, w' ~2-10 m/s,  
     - T' ~10-25 K,  
     - λh ~25-240 km,  
     - λz ~15-30 km 
 
 
 
 
 
- momentum flux varies as  
     <u'w'> ~u'T' (so peaks at  
     intermediate scales) 
  

Horizontal velocity (m/s)         Vertical velocity m/s) 

dominant momentum fluxes 

λh=100 km 

momentum fluxes at 30 km 

λh=20 km 



Fourier-ray tracing 
response at ~85 km 
(Broutman and Ma) 

RF23 (14 July) – Auckland Is. MW event 
- moderate forcing over a small island 

 
- first observation ~7 UT 
- evolved and decayed  

over ~4 hr 
 

- dz~2-3 km, T'~20-30 K 
 

- peak <u'w'>~300 m2/s2 



21 June – Large-Amplitude MWs   

- apparently transient event ~1 hr 
      

- scales vary from ~12 to 80 km  
 

- "sawtooth" T(x) => strong  
    overturning at ~87 km 
 

- dominant MWs at ~85 km have 
    δz >2km, T' ~20K, T ~210K,  
    N ~0.02s-1, λh ~65km, λz ~20-32 km   
       => <u'w'> ~400 m2s-2  or greater   
  

- MWs seen by AIRS for ~4 days  
 

- MW response is larger than NZ 

UT 



Summary 

- MWs achieved large amplitudes and fluxes in the stratosphere and MLT: 
 - weak forcing enables "linear" propagation, very large amplitudes in the MLT  
 - large MW amplitudes and/or weak winds yield breaking in the stratosphere, 
  but continue propagating with smaller amplitudes   
 - MW breaking (stratosphere or MLT) yields strong 2ndary GW generation 
 - the largest momentum fluxes accompany smaller horizontal scales 
  - λh<100 km dominate MLT fluxes during DEEPWAVE 
  - local fluxes are often ~10-100 times mean values 
        => stratospheric "hotspots" also extend much higher  

 
- GWs from jet streams & fronts have larger λh, also penetrate to high altitudes  
 
- larger-scale GWs modulate the propagation of smaller-scale GWs  
 
- high-resolution global and regional models often do a good job of predicting the 

 gross features of the observed responses, under-estimate amplitudes 
 
- our field team of >100 researchers and support staff did a great job!   
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  - others in progress … 


