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Why a GW resolving GCM? 

Current GW parameterizations do a good job in providing the 
GW drag that is required in the mesosphere (non-orographic 
GWs) and winter stratosphere (orographic GWs), but are 
subject to the strong assumptions of single column 
dynamics and a quasi-stationary GW energy equation.  
 

•  Interaction with resolved waves and parameterized turbulent 
diffusion is generally questionable. 

•  Continuous sources for non-orographic waves cannot be 
specifified, only launch-level parameters. 

•  Intermittency is difficult to include. 

•  Parameterized GWs  do not participate in the horizontal 
energy cascade (and in the Lorenz energy cycle). 



Kühlungsborn Mechanistic general Circulation Model (KMCM) 
•  hydrostatic spectral GCM (Simmons & Burridge, 1981, MWR); T120L190 

or T240L190 (up to ~130 km, level spacing ~600 m up to 100 km) 
•  tracer transport based on the spectral method (Schlutow et al., 2014, JGR) 
•  radiative transfer and tropospheric moisture cycle, including a slab ocean, 

land-sea masks (Becker et al., 2015, JASTP); vertically varying heat 
capacity and gas constant, molecular diffusion, and ion drag  

•  Smagorinsky-type horizontal and vertical diffusion; both diffusion 
coefficients depend on the Richardson number; additional linear horizontal 
diffusion in the lower thermosphere 
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Another GW-resolving GCM with a realistic summer-to-winter-
circulation in the upper mesosphere is the vertically extended KANTO 
model (Watanabe et al., 2008, JGR) called JAGUAR (Watanabe and 
Miyahara, 2009, JGR) which is a fully comprehensive spectral GCM 
with T213L270 resolution. 
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Zonal-mean climatology and wave driving, July, KMCM T120L190  
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Diffusion scheme and wave driving, July, KMCM T120L190  
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GW drag in the MLT triggered  
by dynamic instability 



Variability in the MLT at 55°N during July 
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Variability in the MLT at 55°N during July 



Variability in the MLT at 55°S during July 



Variability in the MLT at 55°S during July 
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Simple wavenumber-frequency analysis to explore the nature  
of the reversed GW momentum flux in the lower thermosphere: 

Secondary GWs? 



Vertical evolution of the GW momentum flux spectrum 
(July, 55°N) 
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Vertical evolution of the GW momentum flux spectrum 
(July, 55°N) 



Vertical evolution of the GW momentum flux spectrum 
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Resolution dependence of the simulated GW scales (former model version)< 
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For higher resolution, the simulated gravity waves have 
smaller spatial scales (and higher frequencies). 
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Conclusions 

•  A GW-resolving (spectral) GCM with a Smagorinsky-type 
diffusion scheme that adjusts to dynamic instability (for 
vertical and horizontal diffusion)  yields realistic non-
orographic GW drag in the MLT. 

•  GW attenuation at critical levels at lower altitudes 
where the GW amplitudes are small is not resolved for 
a vertical level spacing of a few 100 m. The simulated 
reversal of the momentum flux above the mesopause is 
spurious.  

•  The simulated GW scales are resolution-dependent 
(general issue of non-convergence of circulation models 
with respect to numerical resolution).   
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Frictional heating and wave driving, July, KMCM T120L190  
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Tropospheric GW activity: 
Arbitrary 2-day time interval during July 



Subgrid-scale diffusion:  
Classical anisotropic Smagorinsky Model  

extended by a Richardson criterion (Becker, 2009, JAS) 

3 free parameters: 2 mixing lengths and α
    (Prandtl numbers are assumed to be 1)



Dynamical Smagorinsky Model 
(Schaefer-Rolffs et al-, 2014, Met. Z.)  

free parameters:  
grid scale, filter scale, … 
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•  frictional heating essential for entropy and energy budgets:                   
net diabatic heating of the atmosphere = frictional heating (Lorenz, 1967) 

•  frictional heating occurs at the end of energy cascades through the 
mesoscales (including GWs) and turbulence 

•  relative importance of thermal dissipation? 
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APE (resolved flow) 
(wavelengths larger than 500 km x 3 km) 

 Energy transfers in conventional atmospheric models 

parameterized GWs 
(wavelengths ~ 200 km x 5 km) 

KE (resolved flow) 
(wavelengths larger than 500 km x 3 km) 

parameterized (macro-)turbulence 

TPE-APE (resolved flow) 
(wavelengths larger than 500 km x 3 km) 

differential heating 

dynamics 

incomplete 
/ flawed 

dissipation  
of KE  

and APE 

spurious 
loss of  
of KE 

vertical 
diffusion  

coefficient 

diffusion  
of sensible heat  
and momentum 



APE (resolved flow) 
wavelengths larger than 200 km x 1 km, 

including resolved GWs) 

Energy transfers in a GW-resolving GCM  
with consistent subgrid-scale diffusion 
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Why a gravity-wave resolving GCM? 
GW parameterizations miss elementary aspects of the mesoscales in the 
real atmosphere: 
•  Wave effects are highly intermittent (temporally and spatially)  

snapshot of temperature (K) and dissipation (K/d) around 85 km (January)  

•  Parameterized GWs  do not participate in the horizontal energy 
cascade, nor do they participate in the Lorenz energy cycle (except 
for the surface friction due to orographic GWs). 


