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Turning points are not sufficient for the existence of trapped lee-waves,

 |R| matters  (Smith et al. 2002) and  Jiang et al. 2006):

Often |R| is small (|R|<<1), except when the boundary layer is unstable!

A good reason for |R|<<1: the background wind is null in z=0, there is a critical level 

for mountain waves !

The  gravity waves  somehow see the presence of this critical level (Lott 2007)
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Case of a small linear damping :  J>0.25

ŵ≈a1 ( z−i ϵ )
1 /2−i√J− 1

4 +a2 ( z−i ϵ)
1 /2+i√J−1

4

|R|=|a2

a1
|=|(−iϵ)i √J−0.25|=e−π √J−0.25

w (z=0)=0

It decreases when J increases.

yields

Near the surface (Booker and Bretherton 1967):

 the boundary condition:

z=
N0

U 0

z

1

J-1/2

U(z)

We will return to the unstable case 
J<0.25 latter

w=ŵ e ikx Monochromatic GW
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1) Motivation: trapped lee waves

For a  viscous bound. |R| depends on the surface Richardson number J
 |R|~1 can only occur when J<0.25 and in the inviscid limit    (Lott 2007)



  

How to integrate a mountain forcing in those results
(the linear boundary condition  w(0)=U(0)dh/dx reduces to 0=0)!

2D Boussinesq non-dimensional 

U=tanh z /√ J , N2
=1

Nonlinear boundary condition:

w (h)=U (h)
dh
dx

w (x , z )=∫−∞

+∞
f (k )ŵc (k , z)e

ikx dk

Linear inflow solution:
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 2) Model description

H N=
H N
U0

, non dim mount. height

F r=
L N
U 0

,Froude or non dim mountain length

Mountain :h=
H n

1+ x2
/F r

2

√J=
d N
U 0,

non-dim shear depth

~Long (1953)



  

                  satisfies:

d ŵc
d z

+( 1
U 2−2

1−U 2

J
−k 2)ŵ c=0

which has an “analytical” solution, satisfying 

ŵ c≈e
−mz/√J when z→∞

m2
=k2

−1and μ
2
=J−0.25

∫−∞

+∞

f (k ) (a1(k )h (x)
1 /2−iμ

+a2(k)h (x)
1 /2+iμ) eikx dk=h

dh
dx

Nonlinear boundary condition determine f(k): 

This inversion can be done when there is dissipation 

ŵ c (k , z )

ŵ c≈a1(k )z
1 /2−iμ

+a2(k) z
1/2+ iμ when z→0
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 2) Model description

ϵ≠0

Nonlinear boundary condition:

w (h)=U (h)
dh
dx

w (x , z )=∫−∞

+∞
f (k )ŵc (k , z)e

ikx dk

Linear inflow solution:

~Long (1953)



  

Results for J=2, H
ND

=0.2, F
r
=10

Strong downslope
winds

Dry Foehn

w(x,z):  structure of
a mountain wave

with vertical wavelength
becoming small near

 the ground

 Remember

ŵ ≈
z→0
z1 /2 e+i√J−0.25 log z

This also means that the
horizontal wind becomes very

Large near the surface

û ≈
z→0
z−1 /2 e+i√J−0.25 log z

This leads to the
strong downslope winds

No trapped waves,
despite the fact that

decreases with altitude

S (z )=
1
U 2−2

1−U 2

J
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 3) Prediction of dowslope windstorms and Foehn

No upper level 
wave breaking



  

These results essentially
Result from the

smallness of the background
horizontal wind

near z=0

Here simulations with
U=1

No strong downslope
winds or jumps when

U=1

Downslope windstorms and trapped lee wave, F. Lott

 3) Prediction of dowslope windstorms and Foehn
Uniform wind, H

ND
=0.2, F

r
=10
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 3) Prediction of dowslope windstorms and Foehn

Downslope windstorms
and “dry” Foehn

are favored in stable flows

Downslope wind amplitude:

Max
z<H n /2

0< x<2Fr

(u(x , z)U (H N)
)

Z BLYR≈5ϵ/F r

Boundary layer depth:

 being the linear damping parameter



  

  |R|~1 can only occur when J<0.25
 and in the inviscid limit (Lott 2007)

ŵ≈a1 ( z−i ϵ )
1 /2+√ 1

4
−J

+a2 ( z−iϵ )
1/2−√ 1

4
−J

Near the surface:

|a2

a1
|=ϵ√0.25−JThe BC: w (z=0)=0 yields

Also, modes with a2=0 exists in our profiles: 

 the longest neutral modes of KH instability
(Drazin 1958)

goes to zero when  goes to zero:
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 4) Trapped lee waves and low level flow stability

The EP flux
û ŵ∗

2
= √0.25−J

2k
|a1|

2
ϵ√0.25−J

|R|→1



  

Pure trapped waves= longest neutral 
mode of KH instability

(Drazin 1958)

Stable (J<0.25), waves stay
confined over the ridge

Unstable (J<0.25), pure trapped lee
waves develop downstream

Transition
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 4) Trapped lee waves and low level flow stability

Trapped waves 
decaying downstream



  

KH  instabilities:

U(z)>0

Always 
Unstable

(actually J=0)

+

N2>0

+

N2>0

Conditionnaly 
Unstable
(if J<0.25)

Trapped mountain waves:

U(z)U(z) N2>0

|R|=1 always

U(z)>0

0

|R|=1 becomes
conditional to

J<0.25)

N2>0

0

++
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Critical level dynamics induces downslope windstorms and Foehn
 when J>1

Trapped lee waves start to appear when J<1

Pure trapped lee waves  when J<0.25 are near KH  instability



  

Critical level dynamics induces downslope windstorms and Foehn
 when J>1

KH  instabilities:

U(z)>0

Always 
Unstable

(actually J=0)

+

N2>0

+

N2>0

Conditionnaly 
Unstable
(if J<0.25)

Trapped mountain waves:

U(z)U(z) N2>0

|R|=1 always
(actually J=0

At the surface)

U(z)>0

0

|R|=1 becomes
conditional to

J<0.25)

N2>0

0

++
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Trapped lee waves start to appear when J<1

Pure trapped lee waves  when J<0.25 are near KH  instability
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