

2016 SPARC Gravity Wave Symposium, 112 Walker Building, Session 9: theory and methodology 2 (Chair: François Lott) 17:05–17:20, 17th May, 2016.

Generation and impact of gravity waves from the dipole

Norihiko SUGIMOTO¹ & Riwal PLOUGONVEN² (¹Dept. Phys., Keio Univ., Japan, ²LMD, Ecole Polytechnique, France)

N. Sugimoto and R. Plougonven, Generation and backreaction of spontaneously emitted inertia-gravity waves, *Geophysical Research Letters*, Vol. 43, (2016), p3519-3525.

Outline

1.Motivation

- <u>Gravity Waves (GW) and their roles</u>
- The concept of "balanced flow" and its limitation
 <u>Sp</u>ontaneous emission of <u>GW</u> (Sp-GW)

2. Experimental setting

- DCPAM5-plane
- Surface modon

3. Results

- Long-term simulation
- Quantify GW and their backreaction

4. Summary

1. Motivation

The roles of gravity waves in the atmosphereTo better understand and quantify non-orographic sources.

PANSY project (2005)

Global energy budget in the ocean To quantify energy derived from mesoscale eddies due to GW radiation.

✓ A possible flux (~1.5TW) estimated by laboratory experiment (Williams et al., 08) is usually referred (Ferrari & Wunsch (10) etc.)

Arrows: energy fluxes (Terrawatts)

Wunsch and Ferrari (2004)

Large scale motions in geophysical flow (rotating stratified flow) are nearly balanced ... but limitation.

"Balanced Flow"

- \checkmark GW filtered out by construction.
- Flow evolution obtained from potential vorticity (advection and inversion). Lorenz(80), Leith(80), Ford(94), Warn(97), Ford et al.(00) etc.; Slow (quasi-)manifold Gent & McWilliams(83), Spall & McWilliams(92), Sugimoto et al.(07a); Balance regimes

"Spontaneous emission" of gravity waves (Sp-GW)

✓ Inevitable radiation.

Demonstration in shallow water (Lighthill radiation). Ford (94), <u>Sugimoto et al.</u> (05, 07b, JAS08, 12); Analogy with sound wave radiation <u>Sugimoto et al.</u> (JFM15a), <u>Sugimoto (PoF15b); Cyclone-anticyclone asymmetry in GW</u>

Spontaneous emission of GW (Sp-GW) in continuous fluid

✓ The dipole has emerged as a paradigm to understand Sp-GW from both obs. and idealized simulations. See reviews by Vanneste (13), Plougonven & Zhang (14)

Sato(99, 08)

Plougonven et al.(05)

1000

distance along section (km)

Snyder *et al.*(07)

Viudes(07)

Yasuda, Sato, and <u>Sugimoto(15)</u>

Generation mechanism (small-scale GW, backreaction, wave capture)

Y. Yasuda, K. Sato, and <u>N. Sugimoto</u>: A Theoretical Study on the Spontaneous Radiation of Inertia-gravity Waves Using the Renormalization Group(RG) Method. (JAS2015a, b).

- Construction of the new theory using RG method (Part I).
- Verification of the theory by JMA-NHM simulation (Part II).

GW are radiated from <u>slaved components</u> through quasi-resonance

This Study

Revisits the spontaneous emission of GW in a dipole

- Long-term simulation to identify the backreaction of GW.
 Estimate energy leaks from dipole due to GW.
 Dependence on Rossby number (Ro).
- Dependence on resolution.

Provide a revised figure of the energy flux for ocean's energy budget based on more physical background.

Experimental setting
 DCPAM5-plane (Dennou-Club Planetary Atmospheric Model)
 3D Primitive equations on *f*-plane without moist process
 Domain: 3000 km×3000 km×20 km (doubly periodic boundary condition)
 Resolution: 128×128×80 to 256×256×80 (Δx,Δy~23.4-11.7 km, Δz~250 m)

- ✓ Sponge layer exist above 15 km
- Initial condition & parameter
- ✓ Surface modon (Muraki and Snyder, 2007)
- ✓ Size: 500 km×500 km×5 km
- ✓ $f=10^{-4}$ (1/s), N=0.01 (1/s), $\theta_0/g=30.6$ (K s²/m)

Ro	U _{max} (m/s)	T (days)	∆t (min)	Hd (day)
0.05	2.5	504	15	0.60
0.10	5.0	252	15	0.30
0.15	7.5	168	10	0.20
0.20	10.0	126	10	0.15
0.25	12.5	100.8	5	0.12
0.30	15.0	84	5	0.1

Time evolutions of surface pressure and vertical velocity

Ro=0.3 (128×128×80)

Vertical velocities after long-term integration

Ro=0.3 (128×128×80)

"Quasi-stationary state".

Deviation from stationarity: emission and dissipation of GW

Emission occurs at well-resolved scales, and dissipation at the smallest

Dependence of the amplitude of GW on Rossby number

Dependence on the resolution (Ro=0.3)

(b) Dependence on resolution 2·10⁻² $2\cdot 10^{-2}$ $1\cdot 10^{-2}$ $5\cdot 10^{-3}$ $2\cdot 10^{-3}$ $2\cdot 10^{-3}$ $2\cdot 10^{-3}$ $1\cdot 10^{-3}$ $1\cdot 10^{-2}$ $2\cdot 10^{-3}$ $1\cdot 10^{-3}$ $1\cdot 10^{-2}$ $2\cdot 10^{-3}$ $1\cdot 10^{-3}$ $1\cdot 10^{-2}$ $2\cdot 10^{-3}$ $1\cdot 10^{-3}$ $1\cdot$ Horizontal resolution determines the wavenumber of GW

GW proportional to horizontal resolution

 Qualitative expectations from describing the evolution of a known source with increased resolution

$$E_{IGW} = \frac{\rho}{2}(\hat{u}^2 + \hat{w}^2) + N^2 \hat{\theta}^2 = \frac{\rho}{2} \hat{w}^2 \left(\frac{m^2}{k^2} + 1\right) + N^2 \hat{\theta}^2 \sim \frac{\rho}{2} \hat{w}^2 \left(\frac{m^2}{k^2}\right),$$

Emission is well resolved (despite persistent sensitivity of the small-scale waves to the resolution).

Energy derived from the dipole almost saturates for H192 and H256

Leakage of energy from the dipole can be estimated.

Physically based upper bound for the leakage of energy from balanced motions in the ocean

4. Summary and discussion

- Spontaneous emission of GW in a dipole is revisited.
 - Maximum wave vertical velocity is proportional to the resolution.
 - The energy extracted by the waves is weakly sensitive to the resolution.
 - The dipole loses at most 0.2% energy per day to inertia-gravity waves.

Global energy budget in the ocean will be revised.

- A maximum flux of energy from balanced motions is estimated by $\sim 0.3 \text{ TW}$, which is weaker than the 1-1.5 TW often considered.
- <u>This estimate is still upper bound</u> because balanced eddies tend to be monopole with weaker Ro and would have kinetic energy only several tens of percent of the total energy ~13 EJ.

References

- ✓ Sugimoto, N., K. Ishioka, and S. Yoden, Balance regimes for the stability of a jet in an *f*-plane shallow water system, *Fluid Dynamics Research*, Vol. 39, (2007), p353-377.
- ✓ <u>Sugimoto, N., K.</u> Ishioka, and S. Yoden, **Gravity wave radiation from unsteady rotational flow in** an *f*-plane shallow water system, *Fluid Dynamics Research*, Vol. 39, (2007), p731-754.
- <u>Sugimoto, N., K. Ishioka, and K. Ishii</u>, Parameter Sweep Experiments on Spontaneous Gravity Wave Radiation From Unsteady Rotational Flow in an *F*-plane Shallow Water System, *Journal* of the Atmospheric Sciences, Vol. 65, (2008), p235-249.
- <u>Sugimoto, N.</u> and K. Ishii, Spontaneous Gravity Wave Radiation in Shallow Water System on a Rotating Sphere, *Journal of the Meteorological Society Japan*, Vol.90, (2012), p101-125.
- Yasuda, Y., K. Sato, and <u>N. Sugimoto</u>, A theoretical study on the spontaneous radiation of inertia-gravity waves using the renormalization group method. Part I: Derivation of the renormalization group equations, *Journal of the Atmospheric Sciences*, Vol. 72, No. 3, (2015), p957-983.
- Yasuda, Y., K. Sato, and N. Sugimoto, A theoretical study on the spontaneous radiation of inertia-gravity waves using the renormalization group method. Part II: Verification of the theoretical equations by numerical simulation, *Journal of the Atmospheric Sciences*, Vol. 72, No. 3, (2015), p984-1009.
- Sugimoto, N., K. Ishioka, H. Kobayashi, and Y. Shimomura, Cyclone-anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water, *Journal of Fluid Mechanics*, Vol. 772, (2015), p80-106.
- Sugimoto, N., Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system, *Physics of Fluids*, Vol. 27, (2015), 121701
- <u>Sugimoto, N.</u> and R. Plougonven, Generation and impact of spontaneously emitted inertiagravity waves, *Geophysical Research* Letters, Vol. 43, (2016), p3519-3525.
- <u>Sugimoto, N.</u>, Inertia-gravity wave radiation from the elliptical vortex in the f-plane shallow water system, *Physics of Fluids*, in preparation.

Dependence on Rossby number

At day 28 for Ro=0.3 runs with different e-folding time of the hyper diffusion 0.025 (blue), 0.05 (light blue), 0.1 (red), 0.2 (purple), 0.5 (green), 1 (yellow), and 2 days (black).