Generation and impact of gravity waves from the dipole

Norihiko SUGIMOTO1 \& Riwal PLOUGONVEN2
(1Dept. Phys., Keio Univ., Japan, 2LMD, Ecole Polytechnique, France)

Outline

1. Motivation
 • Gravity Waves (GW) and their roles
 • The concept of “balanced flow” and its limitation
 • Spontaneous emission of GW (Sp-GW)

2. Experimental setting
 • DCPAM5-plane
 • Surface modon

3. Results
 • Long-term simulation
 • Quantify GW and their backreaction

4. Summary
1. Motivation

The roles of gravity waves in the atmosphere
To better understand and quantify non-orographic sources.
Global energy budget in the ocean

To quantify energy derived from mesoscale eddies due to GW radiation.

- A possible flux (~1.5TW) estimated by laboratory experiment (Williams et al., 08) is usually referred (Ferrari & Wunsch (10) etc.)
Large scale motions in geophysical flow (rotating stratified flow) are nearly balanced … but limitation.

- **“Balanced Flow”**
 - GW filtered out by construction.
 - Flow evolution obtained from potential vorticity (advection and inversion).
 -
 - *Lorenz*(80), *Leith*(80), *Ford*(94), *Warn*(97), *Ford et al.*(00) etc.; Slow (quasi-)manifold
 - *Gent & McWilliams*(83), *Spall & McWilliams*(92), *Sugimoto et al.*(07a); Balance regimes

- **“Spontaneous emission”** of gravity waves (Sp-GW)
 - Inevitable radiation.
 - Demonstration in shallow water (Lighthill radiation).
 - *Ford* (94), *Sugimoto et al.* (05, 07b, JAS08, 12); Analogy with sound wave radiation
 - *Sugimoto et al.* (JFM15a), *Sugimoto* (PoF15b); Cyclone-anticyclone asymmetry in GW
Spontaneous emission of GW (Sp-GW) in continuous fluid

The dipole has emerged as a paradigm to understand Sp-GW from both obs. and idealized simulations. See reviews by Vanneste (13), Plougonven & Zhang (14), Snyder et al. (07), Sato (99, 08), Plougonven et al. (05), Viudes (07), Yasuda, Sato, and Sugimoto (15).
Generation mechanism (small-scale GW, backreaction, wave capture)

- Construction of the new theory using RG method (Part I).
- Verification of the theory by JMA-NHM simulation (Part II).

GW are radiated from slaved components through quasi-resonance

Velocity-variation mechanism
Mountain-wave-like mechanism

Viudez(07)
McIntyre(09)
This Study

Revisits the spontaneous emission of GW in a dipole

- Long-term simulation to identify the backreaction of GW.
- Estimate energy leaks from dipole due to GW.
- Dependence on Rossby number (Ro).
- Dependence on resolution.

Provide a revised figure of the energy flux for ocean’s energy budget based on more physical background.
Experimental setting

DCPAM5-plane (Dennou-Club Planetary Atmospheric Model)

- 3D Primitive equations on f-plane without moist process
- Domain: 3000 km×3000 km×20 km (doubly periodic boundary condition)
- Resolution: 128×128×80 to 256×256×80 ($\Delta x, \Delta y \sim 23.4-11.7$ km, $\Delta z \sim 250$ m)
- Sponge layer exist above 15 km

Initial condition & parameter

- Surface modon (*Muraki and Snyder, 2007*)
- Size: 500 km×500 km×5 km
- $f=10^{-4}$ (1/s), $N=0.01$ (1/s), $\theta_0/g=30.6$ (K s²/m)

<table>
<thead>
<tr>
<th>Ro</th>
<th>U_{max} (m/s)</th>
<th>T (days)</th>
<th>Δt (min)</th>
<th>H_d (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2.5</td>
<td>504</td>
<td>15</td>
<td>0.60</td>
</tr>
<tr>
<td>0.10</td>
<td>5.0</td>
<td>252</td>
<td>15</td>
<td>0.30</td>
</tr>
<tr>
<td>0.15</td>
<td>7.5</td>
<td>168</td>
<td>10</td>
<td>0.20</td>
</tr>
<tr>
<td>0.20</td>
<td>10.0</td>
<td>126</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>0.25</td>
<td>12.5</td>
<td>100.8</td>
<td>5</td>
<td>0.12</td>
</tr>
<tr>
<td>0.30</td>
<td>15.0</td>
<td>84</td>
<td>5</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Time evolutions of surface pressure and vertical velocity

\(\text{Ro}=0.3 \) (128×128×80)

surface pressure

- **Longitude**
- **Latitude**

CONSTANT (1.013E+05) FIELD.

time=0 day

w [m/s] T= 0.0

- **x [km]**
- **y [km]**

- **[m/s]**
Vertical velocities after long-term integration

Ro=0.3 (128×128×80)

“Quasi-stationary state”.
Deviation from stationarity: emission and dissipation of GW

Emission occurs at well-resolved scales, and dissipation at the smallest scales.
Dependence of the amplitude of GW on Rossby number

For the maximum w, 3.5th power of Ro

GW component is extracted by spatial filter

128×128×80 grids

Ro=0.15
Dependence on the resolution ($Ro=0.3$)

Horizontal resolution determines the wavenumber of GW

GW proportional to horizontal resolution

✓ Qualitative expectations from describing the evolution of a known source with increased resolution

\[E_{\text{GW}} = \frac{\rho}{2} (\hat{u}^2 + \hat{w}^2) + N^2 \hat{\theta}^2 = \frac{\rho}{2} \hat{w}^2 \left(\frac{m^2}{k^2} + 1 \right) + N^2 \hat{\theta}^2 \sim \frac{\rho}{2} \hat{w}^2 \left(\frac{m^2}{k^2} \right), \]
Emission is well resolved (despite persistent sensitivity of the small-scale waves to the resolution).

Energy derived from the dipole almost saturates for H192 and H256.
Leakage of energy from the dipole can be estimated.

Physically based upper bound for the leakage of energy from balanced motions in the ocean

-15% of TKE derived by the dipole during 84 days for Ro=0.3 (~0.2%/day)

128×128×80 grids
Spontaneous emission of GW in a dipole is revisited.

- Maximum wave vertical velocity is proportional to the resolution.
- The energy extracted by the waves is weakly sensitive to the resolution.
- The dipole loses at most 0.2% energy per day to inertia-gravity waves.

Global energy budget in the ocean will be revised.

- A maximum flux of energy from balanced motions is estimated by \(\sim 0.3 \text{ TW} \), which is weaker than the 1-1.5 TW often considered.
- This estimate is still upper bound because balanced eddies tend to be monopole with weaker Ro and would have kinetic energy only several tens of percent of the total energy \(\sim 13 \text{ EJ} \).

Sugimoto, N., **Inertia-gravity wave radiation from the merging of two co-rotating vortices in the \(f \)-plane shallow water system**, *Physics of Fluids*, Vol. 27, (2015), 121701

Sugimoto, N., **Inertia-gravity wave radiation from the elliptical vortex in the \(f \)-plane shallow water system**, *Physics of Fluids*, in preparation.
Dependence on Rossby number

(a) Dependence on Ro

Continuous GW radiation for Ro>0.15

128×128×80 grids
At day 28 for Ro=0.3 runs with different e-folding time of the hyper diffusion 0.025 (blue), 0.05 (light blue), 0.1 (red), 0.2 (purple), 0.5 (green), 1 (yellow), and 2 days (black).