
Courant Institute of Mathematical Sciences
Department of Mathematics

Earth, Atmospheric, Planetary Sciences, M.I.T.

A wave-vortex decomposition 
method for one-dimensional 
spectra in the atmosphere and 
ocean

Oliver Bühler 
Jörn Callies, Raffaele Ferrari



A word from our founder

Charney interview

B. See transcript pages 65-66.
Philip Thompson kindly permitted inclusion here of a

facsimile of a letter from Jule Charney, 1947 February 12.

February 1 1947

Lieutenant Philip D. Thompson
Institute for Advanoed Study
Princeton, New Jersey

Dear Phil,

I thoroughly agree that the questions you propound-lieat the very heart of.the whole problem, not only of numericalforecasting but of the solution of .the equations of motion byany means whatever, and I am very pleased to hear that you arenow grappling with them. As you know, I have long been awareof these questions and have from time to time sounded off atsome length about then. I an therefore not only willing butanmious to discuss them with you.

Let .u begin with your last question, 'Why don't thelarge soale atmospherio disturbances move with the speed ofsound?". One answer was given by a scientifii pundit writingin the Readers Digest. It is obvious he says, that man existsonly because of a very improbable concatenation of events. Ifthe solar radiation were twice as great the oceans would dry upand man would simply find existence too uncomfortable. Or ofthe earth. rotated at a much reduced speed he would freeze inwinter and roast in sruer, eto., etc. Done, Dieu existe. Onecould add in the same vein that if cyclones traveled with thespeed of sound man would be whisked right off the earth, whichis manifestly impossible according to our learned scientist.In case these anthropomorpkio argenents leave you cold, and youdo not believe in the Bible or even in the Readers Digest, Ipropose the following argument.

In the terminology which you graciously escribe to mewe might say that the atmosphere is a usical instrument on whichons can play many tunes. High notes are sound waves, low notesare-'lng-inertial waves, and. nature is a musician more of theBeethoven than of the Chopin type. He muoh prefers the low notesand only occasionally plays arpeggios in the treble and then onlywith-i-light hand. The oceans and the continents are the elephantsin Saint-Saens' animal suite, marching in a slow cumbrous rhythm,one step every day or so. Of course, there are overtones; soundwaves, billow clouds (gravity waves), inertial oscillations, eto.,but these are unimportant and are heard only at N.Y.U. and M.I.T.
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We present a simple two-step method by which one-dimensional spectra of horizontal
velocity and buoyancy measured along a ship track can be decomposed into a wave
component consisting of inertia–gravity waves and a vortex component consisting of
a horizontal flow in geostrophic balance. The method requires certain assumptions for
the data regarding stationarity, homogeneity, and horizontal isotropy. In the first step
an exact Helmholtz decomposition of the horizontal velocity spectra into rotational
and divergent components is performed and in the second step an energy equipartition
property of hydrostatic inertia–gravity waves is exploited that allows a diagnosis of the
wave energy spectrum solely from the observed horizontal velocities. The observed
buoyancy spectrum can then be used to compute the residual vortex energy spectrum.
Further wave–vortex decompositions of the observed fields are possible if additional
information about the frequency content of the waves is available. We illustrate the
method on two recent oceanic data sets from the North Pacific and the Gulf Stream.
Notably, both steps in our new method might be of broader use in the theoretical and
observational study of atmosphere and ocean fluid dynamics.

Key words: internal waves, ocean processes, quasi-geostrophic flows

1. Introduction
The decomposition of a complex flow into various constituents that are distinguished

by their intrinsic physical and mathematical properties is a powerful conceptual tool,
which is particularly useful in the flows typical for the atmosphere and ocean, where
small-scale dispersive waves, quasi-two-dimensional large-scale vortical flows along
stratification surfaces, and pockets of three-dimensional turbulence all intermingle in a
nonlinear jigsaw puzzle. The most elementary of such flow decomposition methods is
based on the linearized fluid equations relative to a state of rest, which for a rotating
and stratified three-dimensional fluid system such as the Boussinesq model leads
to the familiar decomposition into a horizontal flow in geostrophic and hydrostatic
balance on the one hand and unbalanced inertia–gravity waves on the other. However,
even this most basic decomposition method in principle requires knowledge of all

† Email address for correspondence: obuhler@cims.nyu.edu
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Abstract10

Spectral analysis is applied to infer the dynamics of mesoscale winds from aircraft

observations in the upper troposphere and lower stratosphere. Two data sets are

analyzed: one collected aboard commercial aircraft and one collected using a dedicated

research aircraft. A recently developed wave–vortex decomposition is used to test the

observations’ consistency with linear inertia–gravity wave dynamics. The decomposition15

method is shown to be robust in the vicinity of the tropopause if flight tracks vary

su�ciently in altitude. For the lower stratosphere, the decompositions of both data

sets confirm a recent result that mesoscale winds are consistent with the polarization

and dispersion relations of inertia–gravity waves. For the upper troposphere, however,
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Midlatitude fluctuations of the atmospheric winds on scales of
thousands of kilometers, the most energetic such fluctuations, are
strongly constrained by the Earth’s rotation and the atmosphere’s
stratification. As a result of these constraints, the flow is quasi-
two-dimensional and energy is trapped at large scales—nonlinear
turbulent interactions transfer energy to larger scales, but not to
smaller scales. Aircraft observations of wind and temperature near
the tropopause indicate that fluctuations at horizontal scales smaller
than about 500 km are more energetic than expected from these
quasi-two-dimensional dynamics. We present an analysis of the ob-
servations that indicates that these smaller-scale motions are due to
approximately linear inertia–gravity waves, contrary to recent claims
that these scales are strongly turbulent. Specifically, the aircraft ve-
locity and temperature measurements are separated into two com-
ponents: one due to the quasi-two-dimensional dynamics and one
due to linear inertia–gravity waves. Quasi-two-dimensional dynamics
dominate at scales larger than 500 km; inertia–gravity waves domi-
nate at scales smaller than 500 km.

atmospheric dynamics | geostrophic turbulence | inertia–gravity waves

The mid-latitude high and low pressure systems visible in weather
maps are associated with winds and temperature fluctuations

that we experience as weather. These fluctuations arise from a baro-
clinic instability of the mean zonal winds at horizontal scales of
a few thousand kilometers, commonly referred to as the synoptic
scales [1, 2, 3]. The combined effects of rotation and stratification
constrain the synoptic-scale winds to be nearly horizontal and to sat-
isfy geostrophic balance, a balance between the force exerted by the
changes in pressure and the Coriolis force resulting from Earth’s ro-
tation. It is an open question whether the same constraints dominate
in the mesoscale range, i.e. at scales of 10–500 km, or whether quali-
tatively different dynamics govern flows at these scales.

The synoptic-scale flows are turbulent in the sense that nonlin-
ear scale interactions, which lie at the core of the difficulty to pre-
dict the weather, exchange energy between different scales of mo-
tion [4, 5, 6, 7]. Under the constraints of rotation and stratification, the
synoptic-scale winds are approximately two-dimensional and non-
divergent [8, 9]. In two-dimensional flows, nonlinear scale interac-
tions tend to transfer energy to larger scales, i.e. the synoptic-scale
pressure anomalies often merge and form larger ones, contrary to
nonlinear scale interactions in three-dimensional flows, which tend
to transfer energy to smaller scales [10]. Little energy is thus trans-
ferred to scales smaller than those at which the synoptic-scale fluc-
tuations are generated through instabilities. Theory and numerical
simulations predict that the energy per unit horizontal wavenumber k
decays as rapidly as k�3 at wavenumbers larger than the wavenumber
corresponding to the instability scale [9, 11]. This predicted kinetic
energy spectrum is roughly consistent with synoptic-scale observa-
tions [9, 12].

Long-range passenger aircraft have been instrumented to collect
velocity and temperature measurements as part of the Global At-
mospheric Sampling Program in the 1970s and the Measurement of
Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)
project in the 1990s and 2000s. The resulting dataset, described in the

materials section, consists of tens of thousand of flights. Because air-
craft travel at altitudes between 9 and 14 km, the data largely reflect
the upper troposphere and lower stratosphere, near the tropopause.
These measurements confirm that the kinetic energy spectrum drops
as k�3 in the synoptic wavenumber range, but there is a transition
in behavior at a scale of about 500 km [13] (cf. Fig. 1a). In the
mesoscale range, at scales smaller than 500 km, the kinetic energy
spectrum decays more slowly, roughly like k�5/3 [13, 14, 15].

The measured kinetic energy spectrum is intriguing, because it
agrees so well with Charney’s theory of geostrophic turbulence at the
synoptic scales [9], but deviates from that prediction at the mesoscale.
The transition to the flatter k�5/3 mesoscale spectrum has been inter-
preted as the signature of small-scale geostrophic flows generated by
convective events [14, 16, 17], as the development of fronts at the
edge of synoptic-scale cyclones and anticyclones at the top of the
troposphere (equivalent to the warm and cold mesoscale fronts we
experience at the Earth’s surface) [18], or as the signature of strati-
fied turbulence at scales where the rotational constraints become less
important [19]. These explanations of the synoptic-to-mesoscale tran-
sition invoke turbulent dynamics and strong interactions between the
synoptic and mesoscale flows.

A rotating and stratified atmosphere, however, supports an addi-
tional, much faster set of motions: inertia–gravity waves. These are
internal gravity waves, modified by the effect of rotation, that have
periods of several minutes to a few hours. In contrast to the strongly
nonlinear, turbulent synoptic-scale flow, these motions are wave-like
and at small amplitude they are approximately governed by linear dy-
namics [20]. It has been proposed that the mesoscale energy is dom-

Significance

High and low pressure systems, commonly referred to as syn-
optic systems, are the most energetic fluctuations of wind and
temperature in the midlatitude troposphere. Synoptic systems
are a few thousand kilometers in scale and are governed by a bal-
ance between the pressure gradient force and the Coriolis force.
Observations collected near the tropopause by commercial air-
craft indicate a change in dynamics at horizontal scales smaller
than about 500 km. Smaller-scale fluctuations are shown to be
dominated by inertia–gravity waves, waves that propagate on
vertical density gradients but are influenced by Earth’s rotation.

Reserved for Publication Footnotes

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–7



Flow analysis and one-dimensional 
data

Utility of one-dimensional data 
samples: 

1. there is no other data 
2. a local snapshot is sought.

Ship track, flight track,rapid flow flow 
past fixed sensor… 

Seeing reality only through a keyhole, 
or only via its shadow on the wall..

x, u

y, v

Ship track measurements 
along x at fixed (y,z,t).

Towed submerged instruments

Aligned with ship track:

Longitudinal velocity u
Transversal velocity    v

Kinematic and dynamic aliasing



wave-vortex jigsaw puzzle

Different dynamical processes can produce identical 1d spectra

In particular, internal waves and quasi-geostrophic vortices may be 
aliased together in the observations

Seeking the fingerprint of waves and 
vortices in snapshots of 1d data

Statistical assumptions:
a. horizontal isotropy
b. 3d homogeneity

Obviously strong.
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fluid set-up, which is a three-dimensional Boussinesq model with constant Coriolis
parameter f and buoyancy frequency N. In § 3, the method is applied to ship-based
measurements of the upper ocean velocity field from two field experiments, one in
the eastern subtropical North Pacific and one in the western North Atlantic. Despite
noisy data and restrictive assumptions, in both cases the separation of submesoscale
geostrophic motions from inertia–gravity waves appears to be fully successful.

2. Helmholtz decomposition and wave diagnostics
We begin by assembling some generic facts about one-dimensional velocity spectra

that are derived from a two-dimensional horizontal flow with homogeneous and
isotropic statistics. For horizontally non-divergent flows this is a subset of well-known
results from homogeneous turbulence theory, but for inertia–gravity waves we need
to accommodate horizontal velocity fields that have both rotational and divergent
components, which is a less studied case.

2.1. Helmholtz decomposition of one-dimensional spectra
Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the ship track, so u is the along-track ‘longitudinal’ component and v is the
across-track ‘transverse’ component. The time t and depth z are considered fixed
during the measurement, so we may ignore these coordinates at this stage. If the flow
is purely rotational, i.e. horizontally non-divergent, then (u, v) derive from a stream
function �(x, y) in the standard way:

ux + vy = 0 ⇥ u = ��y and v = +�x. (2.1a,b)

Let � be a homogeneous and isotropic zero-mean random function such that

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = F(r) (2.2a,b)

where r =
⇥

x2 + y2 and E denotes taking the expected value. The function F(r) is the
covariance of the stream function, which is a function of horizontal distance r > 0
in the two-dimensional plane and encapsulates all the statistical knowledge that is
available for the random velocity field. The power spectrum Ĉ�(k, l) is the Fourier
transform of C�(x, y), i.e.

Ĉ�(k, l) =
� ⇤

�⇤

� ⇤

�⇤
C�(x, y)e�i(kx+ly) dxdy = 2p

� ⇤

0
J0(khr)F(r) rdr = F̂(kh) (2.3)

where kh =
⌅

k2 + l2. The corresponding velocity spectra follow from (2.1a,b) as

Ĉu(k, l) = l2 Ĉ�(k, l) = l2 F̂(kh) and Ĉv(k, l) = k2 Ĉ�(k, l) = k2 F̂(kh). (2.4a,b)

These are clearly not isotropic even though Ĉ� is. For completeness, the cross-
spectrum is given by

Ĉuv(k, l) = �kl Ĉ�(k, l) = �kl F̂(kh). (2.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covariance
functions are given by C�(x, 0) = F(x), for example. For the power spectra this
corresponds to integrating over the transverse wavenumber l:

Ĉ�(k) = 1
2p

� ⇤

�⇤
Ĉ�(k, l) dl = 1

2p

� ⇤

�⇤
F̂(kh) dl. (2.6)
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This integrand is even in l and, at fixed k, we have ldl = khdkh, which allows rewriting
(2.6) as

Ĉ⇥(k) = 1
p

� ⇤

|k|

F̂(kh)⇥
k2

h � k2
khdkh. (2.7)

The same steps lead to the one-dimensional velocity spectra

⇥ only: Ĉu(k) = 1
p

� ⇤

|k|
F̂(kh)

⇤
k2

h � k2 khdkh, (2.8)

Ĉv(k) = k2

p

� ⇤

|k|

F̂(kh)⇥
k2

h � k2
khdkh, (2.9)

where ‘⇥ only’ is added as a reminder that these expressions hold only for
horizontally non-divergent flows that can be expressed through a stream function
⇥ . The corresponding cross-spectrum Ĉuv(k) = 0, because the relevant symbol kl in
(2.5) is odd in l and hence integrates to zero. This will always be the case, so we
will not consider the cross-spectrum any further. By inspection, and using Leibniz’s
rule, we obtain the celebrated formula

⇥ only: Ĉv(k) = �k
d
dk

Ĉu(k) (2.10)

for the horizontally non-divergent case (e.g. Charney 1971). For power-law velocity
spectra of the form k�n this yields

⇥ only: Ĉv(k) = nĈu(k), (2.11)

which, for n > 1, means that along a ship track the transverse spectrum dominates the
longitudinal spectrum for two-dimensional incompressible flows. This is the fingerprint
that was exploited in CF13.

Conversely, we may consider a purely divergent flow, i.e. one that is two-
dimensionally irrotational such that (2.1a,b) is replaced by

vx � uy = 0 ⇥ u = �x and v = �y (2.12a,b)

in terms of a homogeneous and isotropic zero-mean random potential �(x, y) defined
by

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = G(r), (2.13a,b)

where G(r) is the covariance of �. Clearly, apart from the sign change, this simply
reverses the roles of u and v in (2.1a,b), so all the spectra can be worked out just as
before. For the two-dimensional spectra this yields

Ĉu(k, l) = k2 Ĝ(kh) and Ĉv(k, l) = l2 Ĝ(kh) (2.14a,b)

Random zero-mean homogeneous isotropic function
defined in (xy)-plane observed along a ship track y=0:

 (x, y)

2d covariance

2d power spectrum

1d ship track covariance and spectrum
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Ĉ�(k, l) dl = 1

2p

� ⇤

�⇤
F̂(kh) dl. (2.6)

1010 O. Bühler, J. Callies and R. Ferrari

fluid set-up, which is a three-dimensional Boussinesq model with constant Coriolis
parameter f and buoyancy frequency N. In § 3, the method is applied to ship-based
measurements of the upper ocean velocity field from two field experiments, one in
the eastern subtropical North Pacific and one in the western North Atlantic. Despite
noisy data and restrictive assumptions, in both cases the separation of submesoscale
geostrophic motions from inertia–gravity waves appears to be fully successful.

2. Helmholtz decomposition and wave diagnostics
We begin by assembling some generic facts about one-dimensional velocity spectra

that are derived from a two-dimensional horizontal flow with homogeneous and
isotropic statistics. For horizontally non-divergent flows this is a subset of well-known
results from homogeneous turbulence theory, but for inertia–gravity waves we need
to accommodate horizontal velocity fields that have both rotational and divergent
components, which is a less studied case.

2.1. Helmholtz decomposition of one-dimensional spectra
Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the ship track, so u is the along-track ‘longitudinal’ component and v is the
across-track ‘transverse’ component. The time t and depth z are considered fixed
during the measurement, so we may ignore these coordinates at this stage. If the flow
is purely rotational, i.e. horizontally non-divergent, then (u, v) derive from a stream
function �(x, y) in the standard way:

ux + vy = 0 ⇥ u = ��y and v = +�x. (2.1a,b)

Let � be a homogeneous and isotropic zero-mean random function such that

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = F(r) (2.2a,b)

where r =
⇥

x2 + y2 and E denotes taking the expected value. The function F(r) is the
covariance of the stream function, which is a function of horizontal distance r > 0
in the two-dimensional plane and encapsulates all the statistical knowledge that is
available for the random velocity field. The power spectrum Ĉ�(k, l) is the Fourier
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is purely rotational, i.e. horizontally non-divergent, then (u, v) derive from a stream
function �(x, y) in the standard way:

ux + vy = 0 ⇥ u = ��y and v = +�x. (2.1a,b)

Let � be a homogeneous and isotropic zero-mean random function such that

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = F(r) (2.2a,b)

where r =
⇥

x2 + y2 and E denotes taking the expected value. The function F(r) is the
covariance of the stream function, which is a function of horizontal distance r > 0
in the two-dimensional plane and encapsulates all the statistical knowledge that is
available for the random velocity field. The power spectrum Ĉ�(k, l) is the Fourier
transform of C�(x, y), i.e.
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0
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where kh =
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k2 + l2. The corresponding velocity spectra follow from (2.1a,b) as

Ĉu(k, l) = l2 Ĉ�(k, l) = l2 F̂(kh) and Ĉv(k, l) = k2 Ĉ�(k, l) = k2 F̂(kh). (2.4a,b)

These are clearly not isotropic even though Ĉ� is. For completeness, the cross-
spectrum is given by

Ĉuv(k, l) = �kl Ĉ�(k, l) = �kl F̂(kh). (2.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covariance
functions are given by C�(x, 0) = F(x), for example. For the power spectra this
corresponds to integrating over the transverse wavenumber l:

Ĉ�(k) = 1
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Ĉ�(k, l) dl = 1

2p

� ⇤

�⇤
F̂(kh) dl. (2.6)
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fluid set-up, which is a three-dimensional Boussinesq model with constant Coriolis
parameter f and buoyancy frequency N. In § 3, the method is applied to ship-based
measurements of the upper ocean velocity field from two field experiments, one in
the eastern subtropical North Pacific and one in the western North Atlantic. Despite
noisy data and restrictive assumptions, in both cases the separation of submesoscale
geostrophic motions from inertia–gravity waves appears to be fully successful.

2. Helmholtz decomposition and wave diagnostics
We begin by assembling some generic facts about one-dimensional velocity spectra

that are derived from a two-dimensional horizontal flow with homogeneous and
isotropic statistics. For horizontally non-divergent flows this is a subset of well-known
results from homogeneous turbulence theory, but for inertia–gravity waves we need
to accommodate horizontal velocity fields that have both rotational and divergent
components, which is a less studied case.
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transform of C�(x, y), i.e.
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Ĉuv(k, l) = �kl Ĉ�(k, l) = �kl F̂(kh). (2.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covariance
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This integrand is even in l and, at fixed k, we have ldl = khdkh, which allows rewriting
(2.6) as

Ĉ⇥(k) = 1
p

� ⇤

|k|

F̂(kh)⇥
k2

h � k2
khdkh. (2.7)

The same steps lead to the one-dimensional velocity spectra

⇥ only: Ĉu(k) = 1
p

� ⇤

|k|
F̂(kh)

⇤
k2

h � k2 khdkh, (2.8)

Ĉv(k) = k2

p

� ⇤

|k|

F̂(kh)⇥
k2

h � k2
khdkh, (2.9)

where ‘⇥ only’ is added as a reminder that these expressions hold only for
horizontally non-divergent flows that can be expressed through a stream function
⇥ . The corresponding cross-spectrum Ĉuv(k) = 0, because the relevant symbol kl in
(2.5) is odd in l and hence integrates to zero. This will always be the case, so we
will not consider the cross-spectrum any further. By inspection, and using Leibniz’s
rule, we obtain the celebrated formula

⇥ only: Ĉv(k) = �k
d
dk

Ĉu(k) (2.10)

for the horizontally non-divergent case (e.g. Charney 1971). For power-law velocity
spectra of the form k�n this yields

⇥ only: Ĉv(k) = nĈu(k), (2.11)

which, for n > 1, means that along a ship track the transverse spectrum dominates the
longitudinal spectrum for two-dimensional incompressible flows. This is the fingerprint
that was exploited in CF13.

Conversely, we may consider a purely divergent flow, i.e. one that is two-
dimensionally irrotational such that (2.1a,b) is replaced by

vx � uy = 0 ⇥ u = �x and v = �y (2.12a,b)

in terms of a homogeneous and isotropic zero-mean random potential �(x, y) defined
by

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = G(r), (2.13a,b)

where G(r) is the covariance of �. Clearly, apart from the sign change, this simply
reverses the roles of u and v in (2.1a,b), so all the spectra can be worked out just as
before. For the two-dimensional spectra this yields

Ĉu(k, l) = k2 Ĝ(kh) and Ĉv(k, l) = l2 Ĝ(kh) (2.14a,b)
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and the one-dimensional ship-track spectra are

� only: Ĉu(k) = k2
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⇤ ⇥
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h � k2
khdkh, (2.15)

Ĉv(k) = 1
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|k|
Ĝ(kh)

⇧
k2

h � k2 khdkh, (2.16)

where ‘� only’ is added as a reminder that these expressions hold only for irrotational
flows that can be expressed through a velocity potential �. The relationship (2.10) is
replaced by

� only: Ĉu(k) = �k
d
dk

Ĉv(k) (2.17)

and hence now the longitudinal spectrum dominates for power laws with n > 1:

� only: Ĉu(k) = nĈv(k). (2.18)

Note that by definition both F̂ and Ĝ are real and non-negative functions of kh.
Now, a general two-dimensional flow has a Helmholtz decomposition into rotational

and divergent components of the form

u = �⇥y + �x and v = ⇥x + �y, (2.19a,b)

which implies the two-dimensional Poisson equations

⇥xx + ⇥yy = vx � uy and �xx + �yy = ux + vy. (2.20a,b)

This determines both ⇥ and � up to a harmonic function, but with doubly periodic
boundary conditions such a harmonic function could only be a physically meaningless
constant, so ⇥ and � are in fact uniquely determined by (2.20). Progress with the
statistical theory is then possible if ⇥(x, y) and �(x, y) are uncorrelated in the sense
that

E[⇥(x0, y0)�(x0 + x, y0 + y)] = 0 (2.21)

holds for all (x, y). Under this assumption the velocity covariances due to ⇥ and �
simply add up, which yields the one-dimensional ship-track spectra
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These expressions can be substantially simplified if one introduces the auxiliary
functions D⇥(k) and D�(k) defined by

D⇥(k) = 1
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k2

h � k2

⇥
khdkh, (2.22)
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Ĉv(k) = 1
p

⇤ ⇥

|k|
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� only: Ĉu(k) = nĈv(k). (2.18)

Note that by definition both F̂ and Ĝ are real and non-negative functions of kh.
Now, a general two-dimensional flow has a Helmholtz decomposition into rotational

and divergent components of the form

u = �⇥y + �x and v = ⇥x + �y, (2.19a,b)

which implies the two-dimensional Poisson equations

⇥xx + ⇥yy = vx � uy and �xx + �yy = ux + vy. (2.20a,b)

This determines both ⇥ and � up to a harmonic function, but with doubly periodic
boundary conditions such a harmonic function could only be a physically meaningless
constant, so ⇥ and � are in fact uniquely determined by (2.20). Progress with the
statistical theory is then possible if ⇥(x, y) and �(x, y) are uncorrelated in the sense
that

E[⇥(x0, y0)�(x0 + x, y0 + y)] = 0 (2.21)

holds for all (x, y). Under this assumption the velocity covariances due to ⇥ and �
simply add up, which yields the one-dimensional ship-track spectra
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Ĉv(k) = 1
p

⇤ ⇥

|k|

�
k2F̂(kh)⌅

k2
h � k2
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h � k2 khdkh. (2.25)

Two useful auxiliary spectral functions

No obvious differential relation 
between (u,v)-spectra

D =
1

⇡

Z 1

|k|
F̂ (kh)

q
k2h � k2 kh dkh

D� =
1

⇡

Z 1

|k|
Ĝ(kh)

q
k2h � k2 kh dkh
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The functions D⇥ and D� are the spectra of ⇥y and �y, respectively, and they allow
rewriting (2.22) and (2.23) in the succinct form

Ĉu(k) = D⇥(k) � k
d
dk

D�(k) and Ĉv(k) = D�(k) � k
d
dk

D⇥(k). (2.26a,b)

This is the main result of this section, which neatly incorporates both (2.10) and (2.17)
as special cases. The functions D⇥ and D� can be viewed as analogous to ⇥ and � in
the Helmholtz decomposition of the ship-track velocity spectra. Correspondingly, the
horizontal kinetic energy spectrum can be viewed as the sum of a rotational and a
divergent part:

1
2

⌅
Ĉu(k) + Ĉv(k)

⇧
= 1

2

�
D⇥(k) � k

d
dk

D⇥(k)
⇥

+ 1
2

�
D�(k) � k

d
dk

D�(k)
⇥
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2.2. Numerical method for Helmholtz decomposition
The spectral functions D⇥(k) and D�(k) are not directly observable from the ship-track
data, but (2.26) suggests a simple and robust method for computing them from the
directly observed Ĉu and Ĉv. First, the functions D⇥ and D� are symmetric in k so
we only need to find their values for k > 0. Second, in the limit k ⇥ ⇤ we have the
robust decay boundary conditions

D⇥(+⇤) = D�(+⇤) = 0 (2.28)

and this allows us to compute D⇥ and D� for k > 0 by integrating the two ODEs in
(2.26) backwards in k, starting from zero values at k = +⇤. This is particularly easy
in the logarithmic wavenumber

s = ln k such that
d
ds

= k
d
dk

. (2.29)

The ODEs in (2.26) can be integrated numerically, but there is also a closed-form
solution

D⇥(s) =
⇤ ⇤

s

⌅
Ĉu(s̄) sinh(s � s̄) + Ĉv(s̄) cosh(s � s̄)

⇧
ds̄, (2.30)

D�(s) =
⇤ ⇤

s

⌅
Ĉu(s̄) cosh(s � s̄) + Ĉv(s̄) sinh(s � s̄)

⇧
ds̄. (2.31)

In this formulation, the functions D⇥ and D� at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s� s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in D⇥ or D� . This may
occur when either D⇥ or D� become very small, say comparable to the instrumental
noise threshold or to the errors imposed by the limitations of the assumptions of
isotropy and homogeneity in the data (cf. § 3.2 below).
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directly observed Ĉu and Ĉv. First, the functions D⇥ and D� are symmetric in k so
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In this formulation, the functions D⇥ and D� at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s� s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in D⇥ or D� . This may
occur when either D⇥ or D� become very small, say comparable to the instrumental
noise threshold or to the errors imposed by the limitations of the assumptions of
isotropy and homogeneity in the data (cf. § 3.2 below).
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The D-functions can easily be found from the observed velocity spectra!
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robust decay boundary conditions
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in the logarithmic wavenumber
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The ODEs in (2.26) can be integrated numerically, but there is also a closed-form
solution
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In this formulation, the functions D⇥ and D� at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s� s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in D⇥ or D� . This may
occur when either D⇥ or D� become very small, say comparable to the instrumental
noise threshold or to the errors imposed by the limitations of the assumptions of
isotropy and homogeneity in the data (cf. § 3.2 below).
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D�(k) and Ĉv(k) = D�(k) � k
d
dk

D⇥(k). (2.26a,b)

This is the main result of this section, which neatly incorporates both (2.10) and (2.17)
as special cases. The functions D⇥ and D� can be viewed as analogous to ⇥ and � in
the Helmholtz decomposition of the ship-track velocity spectra. Correspondingly, the
horizontal kinetic energy spectrum can be viewed as the sum of a rotational and a
divergent part:

1
2

⌅
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backwards in k using robust decay 
condition
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In this formulation, the functions D⇥ and D� at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s� s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in D⇥ or D� . This may
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isotropy and homogeneity in the data (cf. § 3.2 below).

Helmholtz decomposition of MOZAIC data

Su(k), Sv (k) ) K (k) = K (k) + K�(k)

The synoptic scales are dominated by the rotational component.

The mesoscales have a significant divergent component.

In practice:
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FIGURE 2. Observations from the Gulf Stream region: (a) observed transverse and
longitudinal kinetic energy spectra Ĉu and Ĉv; (b) decomposition into rotational and
divergent components D⇥ and D� from (2.30), (2.31) and (2.27); here K⇥ = (D⇥ �
kdD⇥/dk)/2 and K� = (D� � kdD�/dk)/2; (c) diagnosis of the balanced components of
the observed spectra Ĉu

V and Ĉv
V ; (d) diagnosis of the inertia–gravity wave component of

the observed spectra Ĉu
W and Ĉv

W . In (a) a line corresponding to a k�3 power law has also
been added for reference.

a scale of approximately 20 km. Using (2.30) and (2.31), we perform the Helmholtz
decomposition into rotational and divergent components (figure 1b). In contrast to the
eastern Pacific case, the rotational part D⇥ here vastly dominates over a wide range
of scales: only at 20 km does the divergent component D� become comparable to the
rotational component D⇥ . Notably, at large scales the true D� becomes close to zero,
but our computed D� actually becomes negative, which is of course unphysical. This
is the numerical robustness issue discussed at the end of § 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition,
since the GM empirical spectrum is largely based on observations collected nearby
the North Atlantic region considered here. The diagnosed balanced components
Ĉu

V and Ĉv
V show good agreement with the observed spectra Ĉu and Ĉv in the

range 50–200 km (figure 2c). At larger scales, the reconstruction overestimates the
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V and Ĉv
V ; (d) diagnosis of the inertia–gravity wave component of

the observed spectra Ĉu
W and Ĉv

W . In (a) a line corresponding to a k�3 power law has also
been added for reference.

a scale of approximately 20 km. Using (2.30) and (2.31), we perform the Helmholtz
decomposition into rotational and divergent components (figure 1b). In contrast to the
eastern Pacific case, the rotational part D⇥ here vastly dominates over a wide range
of scales: only at 20 km does the divergent component D� become comparable to the
rotational component D⇥ . Notably, at large scales the true D� becomes close to zero,
but our computed D� actually becomes negative, which is of course unphysical. This
is the numerical robustness issue discussed at the end of § 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition,
since the GM empirical spectrum is largely based on observations collected nearby
the North Atlantic region considered here. The diagnosed balanced components
Ĉu

V and Ĉv
V show good agreement with the observed spectra Ĉu and Ĉv in the

range 50–200 km (figure 2c). At larger scales, the reconstruction overestimates the

CF13, BCF14. Gulf Stream Data: New York Harbour to Bermuda at depth of z = 150 metres 

wavenumber cpkm wavenumber cpkm

Velocity spectra 
strongly dominated by 
rotational part at 
almost all scales
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Linear Boussinesq equations in 3d with constant f and N

ut + fbz ⇥ u+rP = bbz bt +N2w = 0 r ·u = 0

1014 O. Bühler, J. Callies and R. Ferrari

2.3. Inertia–gravity waves and the wave energy spectrum
We now consider the linear Boussinesq equations with constant f and N in a domain
with doubly periodic horizontal boundary conditions. The horizontal velocity field
induced by linear inertia–gravity waves then has both a stream function and a velocity
potential component, which are related as follows. The vertical vorticity satisfies the
linear equation

(vx � uy)t = f wz = �f (ux + vy) ⇥ ⇥t + f � = 0. (2.32)

Equation (2.32) shows that ⇥ and � are in quadrature in time, which we will take to
imply that for a stationary and horizontally isotropic field of random waves ⇥ and �
are uncorrelated at any fixed time t, and therefore the key assumption (2.21) indeed
holds for linear inertia–gravity waves. The reasoning behind this is described in § A.1.

It is of course possible to define further spectral relationships based on the linear
equations, for example (2.32) implies the frequency-dependent relationship

Ĉ⇥
W(k, l, ⇤) = f 2

⇤2
Ĉ�

W(k, l, ⇤) (2.33)

between the three-dimensional wave spectra of ⇥ and �, which are defined in the
usual way as functions of the horizontal wavenumbers and the wave frequency. (Here
and in the following we denote wave-related functions by the subscript W.) However,
such relationships include the wave frequency ⇤ as a parameter, which depends on
(k, l) but also on the vertical wavenumber or some other information about the vertical
structure of the waves. This is of limited use for general ship-track observations,
where the vertical structure is typically not known and therefore (2.33) cannot be
reduced to a unique statement for two-dimensional or one-dimensional spectra. We
note in passing that the situation would be very different in a two-dimensional
fluid system such as the shallow-water equations, where the dispersion relation
determines ⇤2 as a function of (k, l). In this case (2.33) would indeed hold for the
two-dimensional spectra, with ⇤2 determined from the dispersion relation.

We will therefore pursue a different course of action under the assumption that the
waves are hydrostatic, implying that the vertical velocity is negligible in the wave
energy budget. Somewhat surprisingly, this assumption will allow us to deduce the
exact one-dimensional wave energy spectrum

EW(k) = 1
2

⇤
Ĉu

W(k) + Ĉv
W(k) + Ĉb

W(k)
⌅

(2.34)

solely from ship-track observations of u and v! Here Ĉb
W(k) is the spectrum of b/N

where b is the linear buoyancy disturbance, which is related to the vertical velocity w
by

bt + N2w = 0. (2.35)

Hence Ĉb
W/2 is the potential energy spectrum. The computation of EW(k) in (2.34)

hinges on the following statement about the energy equipartition for linear hydrostatic
inertia–gravity waves that are stationary in time as well as spatially homogeneous
in all three directions: the sum of the potential energy plus the rotational horizontal
kinetic energy due to ⇥ then equals the divergent horizontal kinetic energy due to �.
This statement is derived in § A.2 and using (2.27) it takes the form

Ĉb
W(k) +

�
D⇥

W(k) � k
d
dk

D⇥
W(k)

⇥
=
�

D�
W(k) � k

d
dk

D�
W(k)

⇥
. (2.36)

For plane waves exp(i[kx + ly + mz - omega t]) this implies

Can show that psi and phi are uncorrelated for isotropic stationary wave fields so the 
Helmholtz decomposition works.   For propagating waves with omega > f the divergent part 
dominates the rotational part, but the ratio depends on the unobserved frequency.  

However, rather more can be said....

!2 =
k2hN

2 +m2f2

k2h +m2
Ĉ 

W =
f2

!2
Ĉ�

W



Energy equipartition 
for IG waves

Assume random field composed of plane waves, which implies vertical homogeneity 
(this is a weak point for large-scale IG waves in the ocean)

Dispersion relation
!2 =

k2hN
2 +m2f2

k2h +m2
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For a plane wave with frequency ⇤ the linear buoyancy equation bt + N2w = 0 and
the continuity equation wz = �(ux + vy) imply

⇤2Ĉb
W = N2Ĉw

W and m2Ĉw
W = k4

hĈ�
W . (A 9a,b)

Combining (A 9) with ⇤2Ĉ⇥
W = f 2Ĉ�

W from (2.33) and substituting in (A 8) yields
�

1 � ⇤2

N2
+ m2

k2
h

f 2 � ⇤2

N2

⇥
Ĉb

W(k, l, m) = 0. (A 10)

This holds by (A 7) and therefore establishes (A 8). The sought-after (2.36) then
follows after integrating over l and m and dropping the Ĉw

W term because of the
hydrostatic approximation. Conversely, the non-hydrostatic version of (2.36) would be

Ĉb
W(k) +

⇤
D⇥

W(k) � k
d
dk

D⇥
W(k)

⌅
=
⇤

D�
W(k) � k

d
dk

D�
W(k)

⌅
+ Ĉw

W(k). (A 11)

This calculation does depend on the assumption of plane waves, e.g. if standing
vertical modes were considered instead then the result would not hold, because
the wave spectrum is then not homogeneous in the vertical. Mathematically, this is
because (A 9b) does not hold for standing waves. Physically, this occurs because at
nodal horizontal planes, where b = w = 0 at all times, there is no potential energy at
all and equipartition fails even for non-rotating waves.
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W and m2Ĉw
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This implies an equipartition relation for 3d spectra (no dependence on m):
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the inertia–gravity wave case. The fields depend on x and t and we assume stationarity
and homogeneity. We then would like to find out whether

E[u(x0, t0)v(x0 + x, t0)] = 0 (A 3)

holds for left–right symmetric waves. Now, it is easy to construct a homogeneous and
stationary spectrum for which (A 3) fails. Specifically, consider the following spectrum
of plane-wave solutions corresponding to right-going waves only:

u=⇥ cos(k[x� ct]��), v = f
ck

⇥ sin(k[x� ct]��), and h= H
c

⇥ cos(k[x� ct]��).

(A 4a–c)
Here k > 0 is a wavenumber, c = ⌃/k > 0 is the phase speed corresponding to the
positive root of the dispersion relation ⌃2 = f 2 + gHk2, � ⇥ [0, 2p] is a uniformly
distributed random phase shift and ⇥ is a random zero-mean amplitude that is
independent of � and has variance ⇤ 2, say. It follows that

E[u(x0, t0)v(x0 + x, t0)] = f
ck

⇤ 2 sin kx, (A 5)

where it was crucial to take the expectation over the random phase shift �. Obviously,
for this random wavefield (A 3) fails. However, if we impose left–right symmetry on
the random wavefield then we must augment (A 4) by a second wave with identical
and uncorrelated statistics, but going in the opposite direction. This corresponds to
setting c = �⌃/k < 0 and obviously uses the other branch of the dispersion relation.
This leads to a second term in (A 5) with equal-and-opposite sign, which cancels the
first term, and therefore (A 3) is indeed satisfied.

The conclusion is that for wave systems with equal-and-opposite frequency branches
in the dispersion relation a horizontally isotropic stationary random wavefield has the
property that (2.21) is guaranteed to hold if the two fields ⇧ and ⌅ are related by
a simple time derivative and hence in quadrature. This is the case for the rotating
Boussinesq equations as well as for the rotating shallow-water equations and therefore
holds quite generally for gravity waves.

A.2. Energy equipartition statement (2.36) for plane inertia–gravity waves
We derive

(2.36) : Ĉb
W(k) +

�
D⇧

W(k) � k
d
dk

D⇧
W(k)

⇥
=
�

D⌅
W(k) � k

d
dk

D⌅
W(k)

⇥
(A 6)

for a spectrum of stationary, homogeneous, horizontally isotropic, and hydrostatic
plane inertia–gravity waves. We delay making the hydrostatic assumption until the
end, so we start by assuming that the wavenumber vector (k, l, m) and the intrinsic
frequency ⌃ are related by the full dispersion relation of the Boussinesq system with
constant f and N:

(k2
h + m2)⌃2 = m2f 2 + k2

hN2. (A 7)

Next we derive the following equipartition statement for three-dimensional spectra:

Ĉb
W(k, l, m) + k2

hĈ⇧
W(k, l, m) = k2

hĈ⌅
W(k, l, m) + Ĉw

W(k, l, m). (A 8)
rotational KE divergent KEpotential vertical KE

Corresponding relation for 1d IGW spectra:

bt +N2w = 0

�
xx

+ �
yy

= �w
z



hydrostatic 
Wave energy spectrum 

Vertical velocity is typically not observed with present technology, but is negligible 
compared to horizontal velocity for hydrostatic waves (good assumption, not perfect):

!2 ⌧ N2 k2h ⌧ m2

Can neglect vertical kinetic energy

Ĉw
W (k) ⇡ 0
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for a spectrum of stationary, homogeneous, horizontally isotropic, and hydrostatic
plane inertia–gravity waves. We delay making the hydrostatic assumption until the
end, so we start by assuming that the wavenumber vector (k, l, m) and the intrinsic
frequency ⌃ are related by the full dispersion relation of the Boussinesq system with
constant f and N:

(k2
h + m2)⌃2 = m2f 2 + k2

hN2. (A 7)

Next we derive the following equipartition statement for three-dimensional spectra:

Ĉb
W(k, l, m) + k2

hĈ⇧
W(k, l, m) = k2

hĈ⌅
W(k, l, m) + Ĉw

W(k, l, m). (A 8)

Hydrostatic equipartition relation now links potential and horizontal KE:

Hydrostatic wave energy spectrum in 1d
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2.3. Inertia–gravity waves and the wave energy spectrum
We now consider the linear Boussinesq equations with constant f and N in a domain
with doubly periodic horizontal boundary conditions. The horizontal velocity field
induced by linear inertia–gravity waves then has both a stream function and a velocity
potential component, which are related as follows. The vertical vorticity satisfies the
linear equation

(vx � uy)t = f wz = �f (ux + vy) ⇥ ⇥t + f � = 0. (2.32)

Equation (2.32) shows that ⇥ and � are in quadrature in time, which we will take to
imply that for a stationary and horizontally isotropic field of random waves ⇥ and �
are uncorrelated at any fixed time t, and therefore the key assumption (2.21) indeed
holds for linear inertia–gravity waves. The reasoning behind this is described in § A.1.

It is of course possible to define further spectral relationships based on the linear
equations, for example (2.32) implies the frequency-dependent relationship

Ĉ⇥
W(k, l, ⇤) = f 2

⇤2
Ĉ�

W(k, l, ⇤) (2.33)

between the three-dimensional wave spectra of ⇥ and �, which are defined in the
usual way as functions of the horizontal wavenumbers and the wave frequency. (Here
and in the following we denote wave-related functions by the subscript W.) However,
such relationships include the wave frequency ⇤ as a parameter, which depends on
(k, l) but also on the vertical wavenumber or some other information about the vertical
structure of the waves. This is of limited use for general ship-track observations,
where the vertical structure is typically not known and therefore (2.33) cannot be
reduced to a unique statement for two-dimensional or one-dimensional spectra. We
note in passing that the situation would be very different in a two-dimensional
fluid system such as the shallow-water equations, where the dispersion relation
determines ⇤2 as a function of (k, l). In this case (2.33) would indeed hold for the
two-dimensional spectra, with ⇤2 determined from the dispersion relation.

We will therefore pursue a different course of action under the assumption that the
waves are hydrostatic, implying that the vertical velocity is negligible in the wave
energy budget. Somewhat surprisingly, this assumption will allow us to deduce the
exact one-dimensional wave energy spectrum

EW(k) = 1
2

⇤
Ĉu

W(k) + Ĉv
W(k) + Ĉb

W(k)
⌅

(2.34)

solely from ship-track observations of u and v! Here Ĉb
W(k) is the spectrum of b/N

where b is the linear buoyancy disturbance, which is related to the vertical velocity w
by

bt + N2w = 0. (2.35)

Hence Ĉb
W/2 is the potential energy spectrum. The computation of EW(k) in (2.34)

hinges on the following statement about the energy equipartition for linear hydrostatic
inertia–gravity waves that are stationary in time as well as spatially homogeneous
in all three directions: the sum of the potential energy plus the rotational horizontal
kinetic energy due to ⇥ then equals the divergent horizontal kinetic energy due to �.
This statement is derived in § A.2 and using (2.27) it takes the form

Ĉb
W(k) +

�
D⇥

W(k) � k
d
dk

D⇥
W(k)

⇥
=
�

D�
W(k) � k

d
dk

D�
W(k)

⇥
. (2.36)
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Substitution in (2.34) then immediately yields the key result

EW(k) = D�
W(k) � k

d
dk

D�
W(k). (2.37)

In a nutshell, this equation asserts that a Helmholtz decomposition of the horizontal
velocity spectra along a ship track yields the exact wave energy spectrum of linear
hydrostatic inertia–gravity waves, at least under the assumption that the waves can
be modelled as spatially homogeneous, including in the vertical. For a wavefield
dominated by low-order vertical modes this latter assumption would fail, but otherwise
the generality of (2.37) is remarkable.

We note in passing that (2.36) is the hydrostatic version of a more general
equipartition statement (A 11) that is also derived in § A.2. The non-hydrostatic
extension of (2.37) would then have an extra term Ĉw

W on the right-hand side, where
Ĉw

W is the power spectrum of the vertical velocity w. However, the vertical velocity
is typically not available in present-day observations, which is why we restrict to the
hydrostatic case.

2.4. Combination with a geostrophic flow component
If the inertia–gravity wavefield is embedded in a vortical flow in geostrophic balance
then the horizontal velocity field can be viewed as the sum of an unbalanced wave
part and of a balanced ‘vortex’ part. We allow for this by extending the Helmholtz
decomposition to

⇥ = ⇥W + ⇥V and � = �W, (2.38a,b)

where the subscript V denotes the vortex part. The vortex part is horizontally non-
divergent and therefore � has no vortex part.

It is reasonable on physical grounds to assume that ⇥V is statistically independent
of ⇥W and �W , in which case the covariances due to ⇥V simply add to the wave
covariances we have already considered, i.e.

Ĉu(k) = Ĉu
W(k) + Ĉu

V(k) and Ĉv(k) = Ĉv
W(k) + Ĉv

V(k). (2.39a,b)

The corresponding Helmholtz decomposition leads to

D⇥(k) = D⇥
W(k) + D⇥

V (k) and D�(k) = D�
W(k) (2.40a,b)

such that

Ĉu
W(k) = D⇥

W(k) � k
d
dk

D�
W(k), Ĉv

W(k) = �k
d
dk

D⇥
W(k) + D�

W(k), (2.41a,b)

Ĉu
V(k) = D⇥

V (k), Ĉv
V(k) = �k

d
dk

D⇥
V (k). (2.42a,b)

Crucially, D�
W = D� can be computed from the observed velocity spectra exactly as

before, i.e. the function D�
W computed from the velocity observations is unaffected

by the geostrophic flow component. The same is hence true for the hydrostatic wave
energy spectrum EW computed in (2.37). In other words, allowing for the presence
of a geostrophic stream function does not affect the method of computation of the

Wave energy spectrum can be computed from horizontal velocity spectra only!!

wt = b� Pz ⇡ 0



Story so far 

Observe Deduce/predict
Ĉu(k), Ĉv(k) D (k), D�(k)

D�
W (k) = D�(k)
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Helmholtz
decomposition

Still unknown

Unknown partition of wave-vortex mixture for rotational component (3>2)

Need to either know frequency of waves or observe the buoyancy field

D 
W (k) +D 

V (k) = D (k)

Wave energy predicted
from this!



Buoyancy observations

If buoyancy is observed then           is known!Ĉb(k)

Good news:
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wave energy spectrum at all, because the crucial potential part of the Helmholtz
decomposition of the spectra is not affected by the geostrophic flow.

At this point EW , D� = D�
W and the sum D⇥ = D⇥

W + D⇥
V are known, but not D⇥

W

and D⇥
V individually. So the vortical energy spectrum as well as the individual wave

and vortex velocity spectra in (2.41) and (2.42) are still unknown. Either additional
assumptions or additional observations are needed to progress further. We consider two
options: either observing b/N along the ship track, or assuming additional information
about the frequency content of the wavefield.

2.5. Observed buoyancy spectrum
If b/N is observed along the ship track then we know the potential energy spectrum
Ĉb/2 and hence also the total energy spectrum

E(k) = EW(k) + EV(k) = 1
2

�
Ĉu(k) + Ĉv(k) + Ĉb(k)

⇥
. (2.43)

Now, because EW can be computed from (2.37), the vortical energy spectrum

EV(k) = 1
2

�
Ĉu

V(k) + Ĉv
V(k) + Ĉb

V(k)
⇥

= E(k) � EW(k) (2.44)

simply follows by subtraction, so we now know both EW and the residual EV . This
provides an exact energy decomposition into wave and vortex parts based solely on
observing (u, v, b/N) along a ship track, which is of obvious physical importance.

On the other hand, it is still not possible to compute the spectra of the individual
wave and vortex fields from the available data. For example, Ĉb is known but not its
constituents Ĉb

W and Ĉb
V . At least one further auxiliary assumption would be needed

to overcome this. For example, in Charney’s conception of energy equipartition in
three-dimensional quasi-geostrophic turbulence with isotropic statistics (after rescaling
the vertical coordinate by f /N) (Charney 1971), the vortical buoyancy spectrum
is approximately equal to the longitudinal velocity spectrum, which in the present
notation would imply

Ĉb
V(k) = Ĉu

V(k) = D⇥
V (k). (2.45)

Combining this with (2.44) and (2.42) yields

EV(k) = D⇥
V (k) � k

2
d
dk

D⇥
V (k), (2.46)

which is an ODE for D⇥
V in terms of the known EV . This is again easily solved for

D⇥
V (k) by starting with a zero value at k = +⇥ and solving backwards in k for all

k > 0. Thereafter D⇥
W = D⇥ � D⇥

V is known as well and hence all fields have been
completely decomposed into their wave and vortex constituents. This is an attractive
theoretical result, but it must be clearly noted that the underlying heuristic assumption
(2.45) based on isotropy in rescaled coordinates may in practice hold only for the
smallest scales of the geostrophic flow, if it holds at all. We will not use this approach
in this paper.
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V(k) = D⇥
V (k). (2.45)

Combining this with (2.44) and (2.42) yields

EV(k) = D⇥
V (k) � k

2
d
dk

D⇥
V (k), (2.46)

which is an ODE for D⇥
V in terms of the known EV . This is again easily solved for

D⇥
V (k) by starting with a zero value at k = +⇥ and solving backwards in k for all

k > 0. Thereafter D⇥
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V is known as well and hence all fields have been
completely decomposed into their wave and vortex constituents. This is an attractive
theoretical result, but it must be clearly noted that the underlying heuristic assumption
(2.45) based on isotropy in rescaled coordinates may in practice hold only for the
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Total energy spectrum observed, wave energy spectrum deduced

Residual vortex energy spectrum now known

A complete wave-vortex 
decomposition of energy has been 

achieved 



EASTERN subtropicaL NORTH 
PACIFIC

CF13, BCF14. Horizontal velocities and buoyancy at depth of z = 200 metres 

Spectra flatter than Gulf 
Stream data

Divergent component 
important below 100 km

Wave spectrum takes over in 
energy budget at same scale

Compared D^psi/D^phi to GM 
model for waves and value of 
M2 tide

Waves clearly dominate at 
scales smaller than 
100 km, with likely 
important tidal component
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FIGURE 1. Observations from the eastern subtropical North Pacific: (a) observed
transverse and longitudinal kinetic energy and potential energy spectra Ĉu, Ĉv , and Ĉb;
(b) decomposition into rotational and divergent components D⇥ and D� from (2.30), (2.31)
and (2.27); here K⇥ = (D⇥ � kdD⇥/dk)/2 and K� = (D� � kdD�/dk)/2; (c) total observed
energy E and total inertia–gravity wave energy EW from (2.37); (d) ratio D⇥/D� compared
to ⇤⇥ from GM spectrum and M2 value for reference; (e) diagnosis of the balanced
components of the observed spectra Ĉu

V , Ĉv
V , and Ĉb

V ; (f ) diagnosis of the inertia–gravity
wave component of the observed spectra Ĉu

W , Ĉv
W , and Ĉb

W . In (a) a line corresponding to
a k�2 power law has also been added for reference.
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Gage-Nastrom saga
Nastrom Gage 85, Gage Nastrom 86 Measurements of (u,v,b) 

along many flight tracks of 
commercial airliners (GASP 
1970s) near tropopause 
9-15km altitude

Apparent k^-3 scaling at 
large scales 

Flatter k^-5/3 scaling at 
small scales

Transition at 500-700 km 
wavelength

More recent observations 
(MOZAIC 1990-2000) show the 
same 

Datq shifted for 
clarity

Large-scale spectrum 
compatible with down-scale 
enstrophy cascade of 2d or 
quasi-geostrophic 
turbulence, but physical 
origin of small-scale 
spectrum remained subject of 
debate.   



Concluding comments
Simple robust method for Helmholtz decomposition of horizontal 
velocity from one-dimensional data & linear wave-vortex 
decomposition.  


Useful for ship of flight tracks and for local analysis of 
observational/simulation data


Hydrostatic wave energy spectrum for inertia-gravity waves 
computable solely based on observed horizontal velocities


Strong assumptions of horizontal isotropy and vertical homogeneity 


 Ongoing work on anisotropic version (with Max Kuang and Esteban 
Tabak) and on weakly nonlinear ageostrophic balanced flows using 
Omega equation (with Han Wang)


