# Global gravity wave distributions from limb-sounding satellites, ECMWF and ray-tracing modelling

Peter Preusse Manfred Ern, Isabell Krisch, Cornelia Strube Peter Bechtold (ECMWF) Byeong-Gwon Song (Yonsei), Hye-Yeong Chun (Yonsei)



#### **Momentum flux errors**



- Expect HIRDLS GWMF to be lower than ECMWF (~factor 2-3)
- Statistical errors HIRDLS small
- In future: comparison including observational filter

#### **ECMWF: GWMF and direction**



### **ECMWF global data and HIRDLS**



- Very good match at winter mid and high latitude
- Subtropics in ECMWF follow wind rather than convection

 ECMWF: No wave background in tropics, summer hemisphere in HIRDLS this is real, not noise!

## **Raytracing from S3D**



#### **Global backtraces**

29 Jan 2008 ; 12 GMT



Preusse, ACP, 2014

#### RT stop 12-18km

27-Jan-2008 12 GMT



- Almost all ECMWF convective GWs from tropopause
- Convection is parameterized in ECMWF
- Updrafts not represented in GCM core (only net effects couple to core)

## **Propagate ECMWF upward**



## **Propagate ECMWF upward**



## Sources, filtering and dissipation



- Wind filtering in lower stratosphere removes 1st and 3rd peak
- 12km, 25km launch consistent, 45km strongly reduced

#### **Processes responsible?**



#### **General features reproduced**



• Stable vortex: Upper edge of jet  $\rightarrow$ 

Max. of neg. acceleration

 Rebuild Phase: short peak of positive acceleration

#### **Summary**

- ECMWF good representation
  - for orographic GWs, GWs from jets
  - for altitudes <40km</p>
- Upward projection by ray-tracing
- Still we need better global observations
- GLORIA demonstrates abilities in Polstracc/GW-LCycle/Salsa (PGS) campaign ( $\rightarrow$  Poster 10)