Mountain wave induced transport of water vapor across the tropopause (DEEPWAVE campaign)

SPARC Gravity Wave Symposium 2016 18th May 2016

<u>Romy Schlage</u>¹, Stuart Beaton², Andreas Dörnbrack¹, Stefan Kaufmann¹, Markus Rapp¹, Johannes Wagner¹, Christiane Voigt¹

Knowledge for Tomorrow

¹ DLR, Germany ² NCAR, USA

Why looking into gravity wave induced water vapor transport?

Changes in the distribution of climate sensitive gases have a strong impact on radiation budget of the UTLS and on surface temperatures

Why looking into gravity wave induced water vapor transport?

А

40

H₂O Kernel Function

Adj. Total Forcing
Inst. LW Forcing

- Inst. SW Forcing

Changes in the distribution of climate sensitive gases have a strong impact on radiation budget of the UTLS and on surface temperatures

Measurements during DEEPWAVE

DLR Falcon-20

Gas phase H₂O: VCSEL Vertical-cavity surface-emitting laser (open path)

NSF/NCAR GV Hiaper

VCSEL data by Stuart Beaton

Case study on 4th July 2014

- GW event with strongest energy fluxes during the DEEPWAVE campaign
- Coordinated flights of Falcon & GV

Water vapor distribution: CR-2 (Falcon) and VCSEL (GV)

Vertical water vapor flux

Fluctuation

 $q'(t) = q(t) - \overline{q}$ q(t) ... measurement, \overline{q} ... running mean

Vertical flux

$$\overline{w'q'} = \frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} q'(t) \cdot w'(t) dt$$

Vertical water vapor flux

Fluctuation

 $q'(t) = q(t) - \overline{q}$ q(t) ... measurement, \overline{q} ... running mean

Vertical flux

$$\overline{w'q'} = \frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} q'(t) \cdot w'(t) dt$$

Example for FF05: Leg 1 @ ~ 8 km

Water vapor fluxes from Falcon FF05 and GV RF16

- Up- and downstream region: no significant water vapor flux
- waves are propagating through tropopause

Water vapor fluxes from Falcon FF05 and GV RF16

• Amplitude decreases with time \rightarrow gravity wave event weakened

Mean water vapor fluxes

- Vertical mean flux over whole legs is small but high local max. and min. values show significant transport
- Tendency indicates mixing processes but scale cannot be resolved by the measurements

FF05	Mean vertical H ₂ O flux [ppmv*m/s]
Leg1	-3.19
Leg2	0.78
Leg3	0.17
Leg4	(-0.002)

Mean water vapor fluxes

- Vertical mean flux over whole legs is small but high local max. and min. values show significant transport
- Tendency indicates mixing processes but scale cannot be resolved by the measurements

FF05Mean vertical H_2O
flux [ppmv*m/s]Leg1-3.19Leg20.78Leg30.17Leg4(-0.002)

Integrated water vapor flux for FF05

Can models help to answer the question of irreversible trace gas transport?

- WRF simulations: $\Delta x = 2$ km, $\Delta z = 80 600$ m
- Comparison of vertical profiles from 3 different sections of a flight: upstream, mountain, downstream

WRF cross section along FF05: mean profiles of humidity mixing ratio

Tracer-tracer correlation for all Falcon flights

Shape of the correlation:

 Non-GW flights: ideal L-shape → indicates no (less) mixing in the tropopause region

Tracer-tracer correlation for all Falcon flights

Shape of the correlation:

- Non-GW flights: ideal L-shape → indicates no (less) mixing in the tropopause region
- GW flights: smoothed profiles \rightarrow indicate mixing processes

Summary

- Transport of water vapor in the UTLS region induced by mountain waves
- WRF vertical profiles indicate mixing over the mountains
- Campaign tracer-tracer-correlation also suggest mixing in the tropopause region
- Additionally, turbulence analysis is needed to investigate the small-scale mixing

