

Inertia-gravity waves in the mesosphere observed by the PANSY radar

<u>Ryosuke Shibuya^{*1}</u>, Kaoru Sato¹ and Masaki Tsutsumi²

¹The University of Tokyo, Japan ²National Institute of Polar Research, Japan

1. Introduction

The largest flux occurs in Southern winter Hemisphere at the south of 50°S

(Geller et al., 2013)

- Such a peak was simulated in a vertically high-resolution AGCM (KANTO, watanabe et al., 2008)
- $\rho_0 \overline{u'w'}$ exhibits a slanted structure, indicating the existence of dominant paths of GW propagation (Sato et al., 2009)
- GWs around 60°S have an significant impact on a cold-bias problem in CCMs (McLandress et al., 2012)

Observational studies of GWs in the polar region are quite important (e.g., Hertzog et al., 2008; VORCORE superpressure balloon)

1. Introduction

■ The PANSY radar (Sato et al., 2014)

- installed at Syowa Station (39°E, 69°S)
- the first MST/IS radar in the Antarctic

(since 30 April 2012)

• Vertical profiles of three-dimensional wind vectors can be estimated with $\Delta t=2.5$ min,

 $\Delta z = 150 \text{m} (z = 1.5-22 \text{ km}) \text{ and } \Delta z = 600 \text{m} (z = 60-80 \text{ km})$

•The accuracy of line-of-sight velocity is 0.1 m s⁻¹

• The first successful observation with a complete system was performed in 17-24 March 2015

In this period, a large solar flare event occurred (Kataoka et al., 2015)
 — strong wave-like wind disturbances with a period of about 12 h were observed in the mesosphere

Purpose of this study

To elucidate the dynamical characteristics of quasi 12-h disturbances using the high-resolution observation and a numerical model

2. Observational results

3. Numerical setup for a non-hydrostatic model simulation

• In order to examine spatial structures of the disturbances, a non-hydrostatic numerical simulation was performed

■ NICAM (Satoh et al., 2008) : Nonhydrostatic ICosahedral Atmospheric Model

— No <u>cumulous</u> and <u>GW</u> parameterizations

- Time integration: 00 UTC 17 – 00 UTC 24 March 2015
- Initial condition: MERRA reanalysis data
- Horizontal grid structure: stretched and nearly-uniform grid system (∠x ~ 35 km) to the south of 30°S centered at the south pole (glevel =7)
- Vertical grid structure:

L217 ($\angle z = 400 \text{ m}$)

with the model top of z = 87 km

Shibuya et al. (accepted)

4. Numerical results: Comparison with the observation

• We have separated wave components to several types of waves:

- To obtain the horizontal structures of the wave packets, composite maps of zonal wind components have been made
 - The grid point having local maxima of zonal wind components near Syowa Station is chosen as a reference point

-15 -30 -45 -60

- The average is taken for the period when the packet crosses over Syowa Station
- Results:

 \Rightarrow

Packet	<i>k</i> (m ⁻¹)	<i>l</i> (m ⁻¹)	<i>m</i> (m ⁻¹)	ω (s ⁻¹)	C_{p_x} (m s ⁻¹)	С _{рz} (m s ⁻¹)	$\frac{f}{\widehat{\omega}}$
(i) z = 70 km 3/18 12 UTC ~ 3/19 24 UTC	-2.48×10^{-6} (2530 km)	~ 0	3.96 × 10 ⁻⁴ (15.8 km)	1.42×10^{-4} (12.3 h)	-57.3	-0.36	0.763
(ii) z = 70 km 3/20 05 UTC ~ 3/21 01 UTC	-3.18 × 10 ⁻⁶ (1980 km)	-0.98×10^{-6} (6440 km)	4.10×10^{-4} (15.3 km)	1.47×10^{-4} (11.8 h)	-4.62	-0.36	0.704
(iii) z = 75 km 3/21 03UTC ~ 3/22 03 UTC	-2.79 × 10 ⁻⁶ (2250 km)	-2.48×10^{-6} (2530 km)	3. 92 × 10 ⁻⁴ (16. 0 km)	1.99×10^{-4} (8.8 h)	-71.3	-0.51	0.617
(iv) z = 65 km 3/21 21UTC ~ 3/22 09 UTC	-3.35×10^{-6} (1880 km)	−2.78 × 10 ⁻⁶ (2530 km)	4.63×10 ⁻⁴ (13.6 km)	1.46×10^{-4} (11.9 h)	-43.5	-0.32	0.617
(v) z = 72 km 3/22 02 UTC ~ 3/23 02 UTC	-3.78 × 10 ⁻⁶ (1660 km)	-0.82 × 10 ⁻⁶ (7660 km)	4. 52 × 10 ⁻⁴ (13. 9 km)	1.59×10 ⁻⁴ (11.0 h)	-42.1	-0.35	0.653
PANSY			4. 59 × 10 ⁻⁴ (13. 7 km)	1.42×10^{-4} (12.3 h)		-0.30	

■ Directly estimated wave parameters

• The estimated wave parameters in NICAM agree well with those by the PANSY radar

• These parameters are quite consistent with the linear theory of the hydrostatic inertia-gravity waves:

$$(\omega - kU)^2 = f^2 + \frac{N^2(k^2 + l^2)}{m^2}$$

The quasi 12-h disturbances are likely due to large-scale inertia-gravity waves

4. Numerical results: Propagation and generation mechanism

• We made an idealized backward ray tracing analysis of the inertia-gravity wave (e.g. Marks and Eckermann 1995)

— The estimated wave parameter is used in the ray tracing analysis

• The source of the inertia-gravity wave can be at any altitude along the ray above the lowest traceable altitude

- It seems that the wave packet is **"captured"** around the tropospheric jet stream (Bühler & McIntyre 2005)
- The tropospheric jet stream strongly meandered and was imbalanced

 The packet (v) was generated through the spontaneous adjustment process of the imbalanced tropospheric jet stream

(Plougonven & Snyder, 2007)

5. Discussion

- Such a quasi-12 h disturbance in the polar region was also examined by many previous studies
 - most previous studies suggested that this disturbance is due to **tides**:

```
Semi-diurnal migrating tides:
```

- Fraser et al. (1990), Fisher et al. (2002)

```
Semi-diurnal non-migrating tides:
```

Hernandez et al. (1993), Forbes et al. (1995), Fritts et al. (1998)
 Portnyagin et al. (1998), Yamashita et al. (2002), Wu et al. (2003)

<u>"Pseudo-tide</u>" mechanism (GW momentum deposition induced by tides):
Waterscheid et al. (1986), Collins et al. (1992)

• This study first suggests that a quasi-12 h disturbance is due to large-scale inertia-gravity waves, which are generated through the spontaneous adjustment process of the tropospheric jet stream

6. Conclusion

• Large-amplitude disturbances with a period of about 12 h in the mesosphere were examined by using the PANSY radar and the numerical simulation with NICAM

The disturbances were **due to the large-scale inertia-gravity waves** with horizontal wavelength more than 1500 km, **not due to the semi-diurnal tides** — the wave parameters estimated using NICAM agree quite well with

those estimated using the PANSY radar observation

The wave packets simulated over Syowa Station were likely generated through **the spontaneous adjustment** of the tropospheric jet stream and the polar night jet (not shown)

• Statistical studies are needed to examine the seasonality of the large-scale inertiagravity waves by using the observational data and the numerical simulations

4. Numerical results: the MERRA reanalysis dataset

Since the horizontal scale of the quasi-12 h disturbance is large (> 1000 km), the disturbances may be also resolved in the MERRA reanalysis dataset

The MERRA reanalysis dataset does not fully resolved the quasi 12-h oscillation — likely due to their coarse vertical resolution (5 grid points in the range of 16 km)

1. Introduction

- G Gravity waves
- P Planetary waves
- S-Synoptic scale waves

• Propagation paths and breaking regions of gravity waves are not globally uniform

- The wave packet propagate from around (100°E, 40°S) to Syowa Station

 The propagation path detected by this method agrees well with
 the path detected by the classical ray tracing method
- In the lower stratosphere, the propagation of the wave packet is very slow compared with that located in the upper stratosphere

4. Numerical results: Propagation and generation mechanism

02 UTC 23 March, z = 70 km

- The location of the packet at an altitude is determined by the local maxima of the envelop function
 - By tracing the location of the packet backward and downward, the propagation path of the packet can be examined

4. Numerical results: Propagation and generation mechanism

• A wave packet is likely generated through the spontaneous adjustment process of the polar night jet

• The polar night jet is not imbalanced and does not strongly meander

4. Numerical results: the momentum fluxes and energies

- The zonal and meridional momentum fluxes exhibit a slanted structure from the lowerstratosphere to the mesosphere
 - suggesting the waves focusing into the polar vortex (Sato et al. 2009)
 - According to the linear theory of the inertia-gravity waves, by using the vertical kinetic energy \overline{VE} and the potential energy \overline{PE} , we can derive

$$\frac{f}{\hat{\omega}} = \frac{f}{N} \sqrt{\frac{\overline{VE}}{\overline{PE}}}$$

where

 $\frac{f}{\widehat{\omega}}$

$$\overline{VE} = \frac{1}{2}\rho_0 \overline{w'^2}, \ \overline{PE} = \frac{1}{2}\rho_0 \frac{g^2}{N^2} \left(\frac{T'}{T}\right)^2$$

• The estimated intrinsic frequencies are quite consistent with each other