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MS-GWaves / GWING: 
 



ICON (ICOsahedral Non-hydrostatic model) 

è  Joint development of MPI-M and DWD (Zängl et al., 2015) with contributions 
from KIT (chemistry model ART)  

è   Primary features: 

è Unified modelling system for NWP and climate projections  

è Non-hydrostatic dynamical core: applicable on wide range of scales 

è Mass conservation (air mass, moisture, trace gases)  

è Grid nesting for local refinement at very high  
horizontal resolutions 

è Scalability and efficiency on massively parallel  
computer architectures with O(104+) cores 

è  Global model and EU-nest operational at DWD  
since 20 Jan. / 21 July 2015 

ICON triangle grid with nesting 
 



Numerical discretization on icosahedron-based grid: 
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root divisions 
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Project MS-GWaves/GWING (Gravity Wave Interactions in the 
Global Atmosphere) 

è  Extend ICON to UA-ICON:  
è Physics (MPI-M) 

è Dynamical core (DWD) 

è Evaluation with benchmarks:  
HAMMONIA, ECHAM6 (MPI-M) and  
KMCM (IAP), reanalysis products,  
satellite / lidar / radar measurements 

è  In close collaboration with other  
project partners: 
è  Implementation and testing of parameterizations, 

developed and provided by the project partners 

è Simulation and analysis of case studies  
to compare with campaign data of  
gravity waves (GWs) in middle atmosphere 
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Dynamical core of ICON: New implementations 
Deep-atmosphere equations w 
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grid cell r = a + z 
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Deep-atmosphere equations 
è  For efficiency: terms corrected for 

deep atmosphere by metrical 
correction factors computed once 
during initialization 

è  Terrain-following coordinates would   
require correction factors to depend 
not only on z, but also on x and y 
è Considerably higher memory 

costs 
è Severe, error-prone operation 

on dynamical core 
è Additional run-time costs have to 

be minimal: especially important 
for NWP    

zflat = 17 km 

Approximation:  
ri(x,y) = a + zi(x,y) 

   ≈ a + zi 

 
 

Deep  
atmosphere: 

ri = a + zi  
 

grid cell 

grid cell 

vertical grid levels 

Flux divergence 

è  Approximation below zflat: 
Deep-atmosphere corrections assume  
flat topography 
 



è  Vertical resolution 
è Model top at 150 km  

è 120 levels 
 

Current working grid 

è  Horizontal resolution 
è R2B05 → Δx ~ 80 km* 

è R2B06 → Δx ~ 40 km 
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Numerical stability 
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è  GW reflection at model top can lead to 
numerical instabilities and model crash:  
currently prevented by strong (unphysical) 
Rayleigh damping in sponge layer  
(after Klemp et al., 2008) 

è Simulated state above ∼ 100 km not yet 
reliable 

è  Workaround until upper-atmosphere specific 
physics with damping effect, such as increased 
molecular viscosity and ion drag, have been 
implemented 



Validation of ICON with focus on GWs  

w [m/s]  

a) Flow over a relatively steep mountain 
(slope angle ∼ 60°) (Zängl et al., 2015) 

b) GWs and sound waves from hot bubble: 
comparison of linear analytical solution 
(solid/dashed lines) and numerical solution 
(shaded)  (Baldauf et al., 2014) 

è  But analytical(/numerical) benchmark GW-solutions for deep-atmosphere equations 
unfortunately not yet found in literature   



Test case for deep-atmosphere configuration 

Modified Jablonowski-Williamson test:  
evolution of baroclinic instability on small-Earth (DCMIP test case) (Ullrich et al., 2014) 

è  Radius: a → a/20 

è  Rotation rate: Ω → 20Ω  

Intensify deep-atmosphere effects by: 

Shallow atmosphere Deep atmosphere 

Benchmark 
(numerical solution, 
Ullrich et al., 2014) 

ICON* 

*Implementation thanks to Daniel Reinert 



First simple attempt to quantify systematic effects of deep atmosphere 

è  Zonal averages from NWP-simulations*  
temporally averaged over Aug. + Sep. (6 realizations) 

*Grid: R2B06 → Δx ~ 40 km  
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Deep atmosphere Shallow atmosphere Difference 
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Snapshot of GWs in upper atmosphere 

Vertical wind in z = 100 km at 1 September (after 1 simulated month) (following Liu et al., 2014)  
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Maybe qualitatively (Dickinson, 1969): 

Boussinesq- 
GW-operator 

Approximation of localized 
GW-emission events 
(thunderstorms, …) 



Physics for UA-ICON (MPI-M*) 

*by Guidi Zhou, Hauke Schmidt & Elisa Manzini 

Source: science.nasa.gov 

è  Radiation: 

è  Schumann-Runge bands/continuum (O2) 

è  Extreme ultraviolet heating (N2, O, O2) 

è  Non-LTE infrared heating (CO2, NO, O3) 

è  Molecular diffusion and conduction 

è  Ion drag/Joule heating 

è  Chemical heating 

è  Adjustment of GW parameterization 

  



Outlook 

è  ICON contains ECHAM-physics (tailored for climate projections, MPI-M) and 
NWP-physics (tailored for operational NWP, DWD)  

è Upper-atmosphere physics are first implemented and tested in ECHAM  

è Afterwards we transfer them to the NWP-physics (requires thorough 
testing for additional computational costs/run-time neutrality, since new 
implementations must not adversely affect operational use) 

è  Evaluation of upper-atmosphere physics and dynamics by comparison of 
large-scale circulation e.g. with HAMMONIA-climatology  

è  First comparison with measurements (e.g. lidar and radar)  

è  Episodic simulations of campaigns (e.g. DEEPWAVE) 



Thank you! 

Have a look at poster: 
“Gravity wave momentum flux simulated by the ICON model at gravity 
wave permitting resolution”  
by Guidi Zhou 
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