

MS-GWaves / GWING:

Towards UA-ICON – A non-hydrostatic global model for studying gravity waves from troposphere to thermosphere

Sebastian Borchert, Günther Zängl, Michael Baldauf⁽¹⁾,

Guidi Zhou, Hauke Schmidt, Elisa Manzini ⁽²⁾,

Ulrich Achatz⁽³⁾, Erich Becker⁽⁴⁾

2016 SPARC Gravity Wave Symposium

Max-Planck-Institut für Meteorologie

ICON (ICOsahedral Non-hydrostatic model)

- → Joint development of MPI-M and DWD (Zängl et al., 2015) with contributions from KIT (chemistry model ART)
- Primary features: \rightarrow
 - Unified modelling system for NWP and climate projections
 - \rightarrow Non-hydrostatic dynamical core: applicable on wide range of scales
 - \rightarrow Mass conservation (air mass, moisture, trace gases)
 - Grid nesting for local refinement at very high horizontal resolutions
 - \rightarrow Scalability and efficiency on massively parallel computer architectures with $O(10^4+)$ cores
- Global model and EU-nest operational at DWD since 20 Jan. / 21 July 2015

ICON triangle grid with nesting

Numerical discretization on icosahedron-based grid:

Project MS-GWaves/GWING (Gravity Wave Interactions in the Global Atmosphere)

→ Extend ICON to UA-ICON:

- ➔ Physics (MPI-M)
- ➔ Dynamical core (DWD)
- Evaluation with benchmarks: HAMMONIA, ECHAM6 (MPI-M) and KMCM (IAP), reanalysis products, satellite / lidar / radar measurements

In close collaboration with other project partners:

- Implementation and testing of parameterizations, developed and provided by the project partners
- Simulation and analysis of case studies to compare with campaign data of gravity waves (GWs) in middle atmosphere

Dynamical core of ICON: New implementations

DWC

Deep-atmosphere equations

- For efficiency: terms corrected for deep atmosphere by *metrical correction factors* computed once during initialization
- Terrain-following coordinates would require correction factors to depend not only on z, but also on x and y
 - Considerably higher memory costs
 - Severe, error-prone operation on dynamical core
 - Additional run-time costs have to be minimal: especially important for NWP
- Approximation below z_{flat}: Deep-atmosphere corrections assume flat topography

MS-GWaves DEG Deutsche Forschungsgemeinschaft

Forschungsgemeinschaft

Current working grid

Horizontal resolution

- → $R2B05 \rightarrow \overline{\Delta x} \sim 80 \text{ km}^*$
- → $R2B06 \rightarrow \overline{\Delta x} \sim 40 \text{ km}$

Vertical resolution

- → Model top at 150 km
- → 120 levels

 $\overline{\Delta x} = \sqrt{\bar{a}_{Cell}}$

Numerical stability

- GW reflection at model top can lead to numerical instabilities and model crash: currently prevented by strong (unphysical) Rayleigh damping in sponge layer (after Klemp et al., 2008)
 - Simulated state above ~ 100 km not yet reliable
- Workaround until upper-atmosphere specific physics with damping effect, such as increased molecular viscosity and ion drag, have been implemented

Validation of ICON with focus on GWs

a) Flow over a relatively steep mountain (slope angle ~ 60°) (Zängl et al., 2015)

b) GWs and sound waves from hot bubble:comparison of linear analytical solution(solid/dashed lines) and numerical solution(shaded) (Baldauf et al., 2014)

 But analytical(/numerical) benchmark GW-solutions for deep-atmosphere equations unfortunately not yet found in literature

DEG

Forschungsgemeinschaft

Deep atmosphere

MS-GWaves

Test case for deep-atmosphere configuration

Modified Jablonowski-Williamson test: evolution of baroclinic instability on small-Earth (DCMIP test case) (Ullrich et al., 2014)

Intensify deep-atmosphere effects by:

 \rightarrow Radius: $a \rightarrow a/20$

Shallow atmosphere

First simple attempt to quantify systematic effects of deep atmosphere

Zonal averages from NWP-simulations* → temporally averaged over Aug. + Sep. (6 realizations)

*Grid: $R2B06 \rightarrow \Delta x \sim 40$ km

Max-Planck-Institut für Meteorologie

Deep atmosphere

m s-1

DFG Deutsche Forschungsgemeinschaft

Vertical wind in z = 100 km at 1 September (after 1 simulated month) (following Liu et al., 2014)

Maybe qualitatively (Dickinson, 1969):

DEG

Forschungsgemeinschaft

Physics for UA-ICON (MPI-M*)

Radiation:

- → Schumann-Runge bands/continuum (O₂)
- → Extreme ultraviolet heating (N_2 , O, O₂)
- → Non-LTE infrared heating (CO₂, NO, O₃)
- Molecular diffusion and conduction
- ➔ Ion drag/Joule heating
- Chemical heating
- ➔ Adjustment of GW parameterization

Source: science.nasa.gov

Forschungsgemeinschaft

Outlook

- ICON contains ECHAM-physics (tailored for climate projections, MPI-M) and NWP-physics (tailored for operational NWP, DWD)
 - Upper-atmosphere physics are first implemented and tested in ECHAM
 - \rightarrow Afterwards we transfer them to the NWP-physics (requires thorough testing for additional computational costs/run-time neutrality, since new implementations must not adversely affect operational use)
- Evaluation of upper-atmosphere physics and dynamics by comparison of large-scale circulation e.g. with HAMMONIA-climatology
- First comparison with measurements (e.g. lidar and radar) \rightarrow
- Episodic simulations of campaigns (e.g. DEEPWAVE)

Have a look at poster: "Gravity wave momentum flux simulated by the ICON model at gravity wave permitting resolution" by Guidi Zhou

Thank you!

References:

Zängle, G., Reinert, D., Rípodas, P. & Baldauf, M. (2015): "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core", Q. J. R. Meteorol. Soc., **141**, 563 – 579

Krismer, Th.R. & Giorgetta, M.A. (2014): "Wave forcing of the Quasi-Biennial Oscillation in the Max Planck Institute Earth System Model", J. Atmo. Sci., 71, 1985 – 2006

Baldauf, M., Reinert, D. & Zängl G. (2014): "An analytical solution for linear gravity and sound waves on the sphere as a test for compressible, non-hydrostatic numerical models", Q. J. R. Meteorol. Soc., 140, 1974 – 1985

Ullrich, P.A., Melvin, T., Jablonowski, Ch. & Staniforth, A. (2014): "A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores", Q. J. R. Meteorol. Soc., 140, 1590 – 1602

Klemp, J.B., Dudhia, J. & Hassiotis, A.D. (2008): "An upper gravity-wave absorbing layer for NWP applications", Mon. Weath. Rev., 136, 3987 - 4004

Liu, H.-L., McInerney, J.M., Santos, S., Lauritzen, P.H., Taylor, M.A. & Pedatella, N.M. (2014): "Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model", Geophys. Res. Lett., 41, 9106 – 9112

Dickinson, R.E. (1969): "Propagators of atmospheric motion. 1. Excitation by point impulses", Rev. Geophys., 7, 483 – 514

