Convectively coupled gravity waves in global models vs observations

Stefan Tulich

CIRES/University of Colorado and NOAA/ESRL Physical Sciences Division

SPARC Gravity Wave Symposium Penn State University, May 16 2016

Motivation comes partly from a recent NOAA-led field campaign

Key objective was to sample EI-Nino ITCZ convection using the NOAA G4 out of Hawaii

NOAA/ESRL staff were tasked with providing guidance for 6 hr to extended range lead-times

Evolution of satellite-based rainfall indicates some potential for predictability

Evolution of satellite-based rainfall indicates some potential for predictability

Evolution of satellite-based rainfall indicates some potential for predictability

However, 13-km GFS forecasts were found to provide little guidance

Space-time spectrum of rain confirms the GFS is missing 18-m/s IGWs

However, spectral decomposition is limited in that:

Physical Space

Spectral Space

So consider the FFT of the power spectrum \rightarrow autocorrelation

Similar results seen in most re-analysis products*

*taken from Kim and Alexander (2013; J. of Climate)

And also the gold standard, ERA-interim

Focus thus far has been on conventional global models – what about "superparameterized" models?

VOLUME 21

JOURNAL OF CLIMATE

1 February 2008

Evaluation of the Simulated Interannual and Subseasonal Variability in an AMIP-Style Simulation Using the CSU Multiscale Modeling Framework

MARAT KHAIROUTDINOV,* CHARLOTTE DEMOTT, AND DAVID RANDALL

Looking at smaller scales in the SP-CAM shows both eastward and westward IGW signals

Looking at smaller scales in the SP-CAM shows both eastward and westward IGW signals

Remainder of this talk will focus on a new superparameterized WRF model*

Unique capabilities:

- » Can be run either regionally or globally
- » Seamless GCM-CRM coupling (WRF inside WRF)
- » Wide variety of bulk physics options
- » Novel treatment of convective momentum transport (CMT)

*SP-WRF (Tulich, JAMES 2015)

Model Setup

- Series of June-August simulations for 5 consecutive years (2008-2012)
- Global 2.8 deg x 2.8 deg with 51 levels and 32 x 4-km CRMs
- Model initialized from ERA-interim data using four-dimensional data assimilation
- Microphysics and radiation based on Goddard schemes

Simulated time-mean precipitation looks reasonable

However, gravity wave signals are once again too slow

...but better than the previous models

An idealized benchmark to gain insight

Standard WRF as large 2D CRM

VS

2D SP-WRF

An idealized benchmark to gain insight

VS

Model forcing is given by:

Also, SST is uniform at 302.5 K and radiative-like cooling of 1.5K/day is prescribed in the troposphere

Results of the benchmark calculation

However, SP-WRF produces slower and less-coherent waves

Likely due to very different temperature structures

These differences appear to be due to the presence of a background flow

These differences appear to be due to the presence of a background flow

Better agreement is also obtained with shear at higher outer-model resolution (64 km)

Better agreement is also obtained with shear at higher outer-model resolution (64 km)

However, this result does not carry over to the global climate simulation

0.7x0.7 deg. with 8 x 4-km CRMs

Perhaps due to other

0.7x0.7 deg. with 8 x 4-km CRMs

Perhaps due to other complicating factors such as ambient rotation

Perhaps due to other complicating factors such as rotation

 $f = 10^{-4} \text{ s}^{-1}$

From Liu and Moncrieff (2004; J. Atmos. Sci.)

Concluding remarks

- Simulation of convectively coupled IG waves is clearly challenge for numerical models even at greyzone resolution or with superparameterized physics
- Important implications for predicting short-term weather in the tropics (and extra-tropics), as well as for simulating the QBO