Gravity wave emission and propagation in the differentially heated rotating annulus experiment

Steffen Hien, Joran Rolland & Ulrich Achatz
Goethe University Frankfurt am Main

Sebastian Borchert
German Weather Service, Offenbach am Main

2016 SPARC Gravity Wave Symposium

05/17/2016
Introduction and Motivation

- Orographic and convective sources of inertia-gravity waves (IGW) well understood (Fritts (2003))
- Spontaneously emitted GWs active field of research (Cámara and Lott (2015), ...)
- Observation identify increased IGW activity in jet exit regions (e.g. Plougonven and Zhang (2014))
- GW emission embedded in various atmospheric processes
- Need for controllable, repeatable and simplified laboratory experiments: **rotating annulus**

Koch and OHandley (1997)
Introduction and Motivation

- Differentially heated rotating annulus experiment:

- Finite volume code (cylFloit) to simulate experiment using Boussinesq approximation (Borchert et al. (2015))
Annulus simulations show clear GW activity (Borchert et al. (2014))
Annulus simulations show clear GW activity (Borchert et al. (2014))

Further understanding of GW source processes: tangent linear analysis (see Snyder et al. (2009), Wang and Zhang (2010))

⇒ Is there some internal forcing of GWs by the balanced flow?
Decomposition of flow into **geostrophic** and **ageostrophic** part

\[\mathbf{v} = u_g + v_a \]
\[B = B_g + B_a \]
\[p = p_g + p_a \]
Source mechanism of gravity wave emission

Decomposition of flow into **geostrophic** and **ageostrophic** part

\[\mathbf{v} = \mathbf{u}_g + \mathbf{v}_a \]
\[B = B_g + B_a \]
\[p = p_g + p_a \]

\[f e_z \times \mathbf{u}_g + \nabla_h p_g = 0 \]
\[B_g - \frac{\partial p_g}{\partial z} = 0 \]

\[f \mathbf{e}_z \times \mathbf{u}_g + \nabla_h p_g = 0 \]
\[B_g - \frac{\partial p_g}{\partial z} = 0 \]

\[\Pi_g = \zeta + \frac{f}{N^2} \frac{\partial B}{\partial z} = \frac{1}{f} \left(\nabla_h^2 + \frac{f^2}{N^2} \frac{\partial^2}{\partial z^2} \right) p_g \]

\[\zeta_a + \frac{f}{N^2} \frac{\partial B_a}{\partial z} = 0 \]

\[\delta = \nabla_h \cdot \mathbf{u} = \delta_a = \nabla_h \cdot \mathbf{u}_a \]
Source mechanism of gravity wave emission

Decomposition of flow into \textbf{geostrophic} and \textbf{ageostrophic} part

\[f e_z \times u_g + \nabla_h p_g = 0 \]
\[B_g - \frac{\partial p_g}{\partial z} = 0 \]
\[\mathbf{v} = u_g + \mathbf{v}_a \]
\[B = B_g + B_a \]
\[p = p_g + p_a \]
\[\Pi_g = \zeta + \frac{f}{N^2} \frac{\partial B}{\partial z} = \frac{1}{f} \left(\nabla_h^2 + \frac{f^2}{N^2} \frac{\partial^2}{\partial z^2} \right) p_g \]
\[\zeta_a + \frac{f}{N^2} \frac{\partial B_a}{\partial z} = 0 \]
\[\delta = \nabla_h \cdot \mathbf{u} = \delta_a = \nabla_h \cdot \mathbf{u}_a \]

... \Rightarrow \textbf{Geostrophic forcing of ageostrophic flow}

\[\frac{D \delta_a}{Dt} = - \frac{\partial B_a}{\partial z} + \frac{\partial^2 p_{aa}}{\partial z^2} + \frac{\partial \mathbf{v}}{\partial z} \cdot \mathbf{w}_a - \frac{\partial^2}{\partial z^2} \nabla^{-2} \left(\nabla u_g \cdot \nabla u_g \right) \]
Tangent Linear Analysis

Linearisation of unbalanced flow about balanced flow: Principle

- Decomposition into balanced (large) and unbalanced (small) part

\[x = \tilde{x} + x' \text{ with } |x'| \ll |\tilde{x}| \quad (\text{Unbalanced part} \equiv \text{gravity waves}) \]

- Tangent linear evolution of \(x' \)

\[
\frac{\partial x'}{\partial t} = L(\tilde{x})x' + F(\tilde{x})
\]

with a linear operator \(L(\tilde{x}) \) and a balanced forcing term \(F(\tilde{x}) \)

- Unbalanced component is integrated separately within each time step
- Balanced part serves as background of the tangent linear model
Tangent Linear Analysis

Linearisation of unbalanced flow about balanced flow: Principle

- Decomposition into balanced (large) and unbalanced (small) part

\[x = \tilde{x} + x' \text{ with } |x'| \ll |\tilde{x}| \quad (\text{Unbalanced part} \equiv \text{gravity waves}) \]

- Tangent linear evolution of \(x'\)

\[
\frac{\partial x'}{\partial t} = L(\tilde{x})x' + F(\tilde{x})
\]

with a linear operator \(L(\tilde{x})\) and a balanced forcing term \(F(\tilde{x})\)

- Unbalanced component is integrated separately within each time step
- Balanced part serves as background of the tangent linear model

Balanced forcing leading contributor to the gravity wave activity?
Problem: Instabilities at side walls

- Linear model diverges after about 4-5 s of integration time
- Exponential growth rate at outer (and inner) side walls

Vertical velocity w, Full Forcing, initzero, $T=4s$
Suppress growth at side wall: Multiplication with window function

\[f(x) = \begin{cases}
1, & |x| \leq \beta L_y \\
\frac{1}{2} \left\{ 1 + \cos \left[\pi \left(\frac{|x| - \beta L_y}{L_s} \right) \right] \right\}, & \beta L_y < |x| \leq [\beta + \gamma (1 - \beta)] L_y \\
0, & \text{else}
\end{cases} \]
Results

Comparison of horizontal divergence

- Initialising linear model with zero unbalanced part
- Full forcing
- $T = 22\,s$ ($\Omega = 0.08\,\text{rad/s}$, rotation period $\sim 79\,s$)
Comparison of horizontal divergence

- Initialising linear model with zero unbalanced part
- Full forcing
- T=22 s (\(\Omega = 0.08 \text{ rad/s}\), rotation period \(\sim 79 \text{ s}\))
Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x - \tilde{x}$
- $T=0$ s
Results

Comparison of horizontal divergence

- Initialising linear model with $x'_{\text{init}} = x - \tilde{x}$
- $T=0$ s

nonlinear model linear with forcing linear without forcing
Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x - \tilde{x}$
- $T=10$ s
Comparison of horizontal divergence

- Initialising linear model with $x'_{\text{init}} = x - \tilde{x}$
- $T=10$ s

nonlinear model linear with forcing linear without forcing
Results

Comparison of horizontal divergence

- Initialising linear model with $x_{\text{init}}' = x - \tilde{x}$
- $T=20$ s
Results

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x - \bar{x}$
- $T=20$ s

Nonlinear model
Linear with forcing
Linear without forcing
Comparison of horizontal divergence

- Initialising linear model with $x'_{\text{init}} = x - \tilde{x}$
- $T=30 \text{ s}$
Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x - \tilde{x}$
- $T=30$ s

![Comparison of horizontal divergence](image.png)

- Nonlinear model
- Linear with forcing
- Linear without forcing
Conclusion:

- Increased GW activity within the baroclinic wave and close to the inner cylinder wall
- Tangent linear analysis to gain further understanding of the GW source mechanism
- Window function to suppress growth rate at side walls
- Significant internal forcing of GW by the balanced flow

Outlook:

- Extract balanced part of horizontal divergence: omega equation
- Characterizing wave properties ($\vec{k}, A, ..$)
References

Tangent linear annulus equations

\[
\frac{dB_a}{dt} = - N^2 w_a - \left(\frac{dB_g}{dt} \right)_a - \left\{ \left(\frac{dB_g}{dt} \right)_g \right\}
\]

\[
\frac{du_a}{dt} = - f e_z \times u_a - \nabla_h \tilde{\rho}_{aa} - \left(\frac{du_g}{dt} \right)_a - \left\{ \nabla_h \tilde{\rho}_{ag} + \left(\frac{du_g}{dt} \right)_g \right\}
\]

\[
\frac{dw_a}{dt} = B_a - \frac{\partial \tilde{\rho}_{aa}}{\partial z} - \left\{ \frac{\tilde{\rho}_{ag}}{\partial z} \right\}
\]
Forcing terms

- **Large scale** balanced forcing leading contributor to gravity wave activity
- \(T = 0 \ s \)
Balanced part of horizontal divergence: Omega equation

- Total horizontal divergence includes balanced part

\[\delta_{\text{total}} = \delta_{\text{unbal}} + \delta_{\text{bal}} \]

- Subtract balanced part using omega equation (Hoskins et al. (1978), Danioux et al. (2012))

\[\Rightarrow \delta_{\text{unbal}} = \delta_{\text{total}} - \delta_{\text{bal}} \]

\[= \nabla_h \cdot \mathbf{u}_a - \delta_{\text{bal}}, \text{ with } \delta_{\text{bal}} = -\frac{\partial w_{\text{bal}}}{\partial z} \]

\[\nabla_h^2 w_{\text{bal}} = -\frac{2}{N^2} \nabla_h \cdot \mathbf{Q}, \text{ with } \mathbf{Q} = \nabla_h \mathbf{u}_g \cdot \nabla_h b_g \]
Balanced part of horizontal divergence: Omega equation

\[\delta_{total} \quad \delta_{unbal} \quad \delta_{bal} \]