Gravity wave emission and propagation in the differentially heated rotating annulus experiment

Steffen Hien, Joran Rolland & Ulrich Achatz

Goethe University Frankfurt am Main

Sebastian Borchert

German Weather Service, Offenbach am Main

2016 SPARC Gravity Wave Symposium

05/17/2016

Steffen Hien

05/17/2016 1 / 19

- Orographic and convective sources of inertia-gravity waves (IGW) well understood (Fritts (2003))
- Spontaneously emitted GWs active field of research (Cámara and Lott (2015), ...)
- Observation identify increased IGW activity in jet exit regions (e.g. Plougonven and Zhang (2014))
- GW emission embedded in various atmospheric processes
- Need for controllable, repeatable and simplified laboratory experiments: rotating annulus

Koch and OHandley (1997)

Gravity waves in the rotating annulus

05/17/2016 2 / 19

• Differentially heated rotating annulus experiment:

• Finite volume code (cylFloit) to simulate experiment using Boussinesq approximation (Borchert et al. (2015))

• Annulus simulations show clear GW activity (Borchert et al. (2014))

05/17/2016 4 / 19

• Annulus simulations show clear GW activity (Borchert et al. (2014))

• Further understanding of GW source processes: tangent linear analysis (see Snyder et al. (2009), Wang and Zhang (2010))

\Rightarrow Is there some internal forcing of GWs by the balanced flow?

Steffen Hien

Source mechanism of gravity wave emission

Decomposition of flow into geostrophic and ageostrophic part

$$v = u_g + v_a$$
$$B = B_g + B_a$$
$$p = p_a + p_a$$

Source mechanism of gravity wave emission

Decomposition of flow into geostrophic and ageostrophic part

$$f e_{z} \times u_{g} + \nabla_{h} p_{g} = 0$$

$$B_{g} - \frac{\partial p_{g}}{\partial z} = 0$$

$$B_{g} - \frac{\partial p_{g}}{\partial z} = 0$$

$$\Pi_{g} = \zeta + \frac{f}{N^{2}} \frac{\partial B}{\partial z} = \frac{1}{f} \left(\nabla_{h}^{2} + \frac{f^{2}}{N^{2}} \frac{\partial^{2}}{\partial z^{2}} \right) p_{g}$$

$$\zeta_{a} + \frac{f}{N^{2}} \frac{\partial B_{a}}{\partial z} = 0$$

$$\delta = \nabla_{h} \cdot u = \delta_{a} = \nabla_{h} \cdot u_{a}$$

Source mechanism of gravity wave emission

Decomposition of flow into geostrophic and ageostrophic part

$$f e_{z} \times u_{g} + \nabla_{h} p_{g} = 0$$

$$B_{g} - \frac{\partial p_{g}}{\partial z} = 0$$

$$B_{g} - \frac{\partial p_{g}}{\partial z} = 0$$

$$\Pi_{g} = \zeta + \frac{f}{N^{2}} \frac{\partial B}{\partial z} = \frac{1}{f} \left(\nabla_{h}^{2} + \frac{f^{2}}{N^{2}} \frac{\partial^{2}}{\partial z^{2}} \right) p_{g}$$

$$\zeta_{a} + \frac{f}{N^{2}} \frac{\partial B_{a}}{\partial z} = 0$$

$$\delta = \nabla_{h} \cdot u = \delta_{a} = \nabla_{h} \cdot u_{a}$$

 $\dots \Rightarrow$ Geostrophic forcing of ageostrophic flow

$$\frac{D\delta_{a}}{Dt} = -\frac{\partial B_{a}}{\partial z} + \frac{\partial^{2} p_{aa}}{\partial z^{2}} + \frac{\partial \mathbf{v}}{\partial z} \cdot \mathbf{w}_{a} - \frac{\partial^{2}}{\partial z^{2}} \nabla^{-2} \left(\nabla \mathbf{u}_{g} \cdot \cdot \nabla \mathbf{u}_{g} \right)$$

05/17/2016 5 / 19

• • • • • • • • • • • •

Tangent Linear Analysis

Linearisation of unbalanced flow about balanced flow: Principle

• Decomposition into balanced (large) and unbalanced (small) part

 $x = \tilde{x} + x'$ with $|x'| << |\tilde{x}|$ (Unbalanced part=gravity waves)

• Tangent linear evolution of x'

$$\frac{\partial x'}{\partial t} = L(\tilde{x})x' + F(\tilde{x})$$

with a linear operator $L(\tilde{x})$ and a balanced forcing term $F(\tilde{x})$

- Unbalanced component is integrated separately within each time step
- Balanced part serves as background of the tangent linear model

Tangent Linear Analysis

Linearisation of unbalanced flow about balanced flow: Principle

• Decomposition into balanced (large) and unbalanced (small) part

 $x = \tilde{x} + x'$ with $|x'| << |\tilde{x}|$ (Unbalanced part=gravity waves)

• Tangent linear evolution of x'

$$\frac{\partial x'}{\partial t} = L(\tilde{x})x' + F(\tilde{x})$$

with a linear operator $L(\tilde{x})$ and a balanced forcing term $F(\tilde{x})$

- Unbalanced component is integrated separately within each time step
- Balanced part serves as background of the tangent linear model

• Balanced forcing leading contributor to the gravity wave activity?

Steffen Hien

Problem: Instabilities at side walls

- linear model diverges after about 4-5 s of integration time
- Exponential growth rate at outer (and inner) side walls

Suppress growth at side wall: Multiplication with window function

$$f(x) = \begin{cases} 1, & |x| \leq \beta L_y \\ \frac{1}{2} \left\{ 1 + \cos\left[\frac{\pi(|x| - \beta L_y)}{L_s}\right] \right\}, & \beta L_y < |x| \leq [\beta + \gamma(1 - \beta)] L_y \\ 0, & else \end{cases}$$

Steffen Hien

Gravity waves in the rotating annulus

05/17/2016 8 / 19

Comparison of horizontal divergence

- Initialising linear model with zero unbalanced part
- Full forcing
- T=22 s ($\Omega=0.08~rad/s,$ rotation period \sim 79 s)

Comparison of horizontal divergence

- Initialising linear model with zero unbalanced part
- Full forcing
- T=22 s ($\Omega=0.08~rad/s,$ rotation period \sim 79 s)

nonlinear model

linear model

Steffen Hien

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=0 s

Image: A matrix

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=0 s

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=10 s

イロト イヨト イヨト イヨト

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=10 s

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=20 s

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=20 s

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=30 s

< ロ > < 同 > < 三 > < 三

Comparison of horizontal divergence

- Initialising linear model with $x'_{init} = x \tilde{x}$
- T=30 s

Conclusion:

- Increased GW activity within the baroclinic wave and close to the inner cylinder wall
- Tangent linear analysis to gain further understanding of the GW source mechanism
- Window function to suppress growth rate at side walls
- Significant internal forcing of GW by the balanced flow

Outlook:

- Extract balanced part of horizontal divergence: omega equation
- Characterizing wave properties $(\vec{k}, A, ..)$

- Borchert, S., U. Achatz, and M. D. Fruman (2014, Oct). Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. J. Fluid Mech. 758, 287–311.
- Borchert, S., U. Achatz, S. Remmler, S. Hickel, U. Harlander, M. Vincze, K. D. Alexandrov, F. Rieper, T. Heppelmann, and S. I. Dolaptchiev (2015, 01). Finite-volume models with implicit subgrid-scale parameterization for the differentially heated rotating annulus. *Meteorologische Zeitschrift* 23(6), 561–580.
- Cámara, a. D. and F. Lott (2015, Mar). A parameterization of gravity waves emitted by fronts and jets. Geophysical Research Letters 42(6), 2071–2078.
- Danioux, E., J. Vanneste, P. Klein, and H. Sasaki (2012, Apr). Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. *Journal of Fluid Mechanics 699*, 153–173.
- Fritts, D. C. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics 41(1).
- Hoskins, B. J., I. Draghici, and H. C. Davies (1978). A new look at the omega-equation. Quarterly Journal of the Royal Meteorological Society 104, 31–38.
- Koch, S. E. and C. OHandley (1997). Operational Forecasting and Detection of Mesoscale Gravity Waves. Weather and Forecasting 12(2), 253–281.
- Plougonven, R. and F. Zhang (2014, Jan). Internal gravity waves from atmospheric jets and fronts. *Reviews of Geophysics* 52(1), 33–76.
- Snyder, C., R. Plougonven, and D. J. Muraki (2009). Mechanisms for Spontaneous Gravity Wave Generation within a Dipole Vortex. *Journal of the Atmospheric Sciences* 66(11), 3464–3478.
- Wang, S. and F. Zhang (2010). Source of Gravity Waves within a Vortex-Dipole Jet Revealed by a Linear Model. Journal of the Atmospheric Sciences 67(5), 1438–1455.

(日) (同) (三) (三)

Tangent linear annulus equations

$$\frac{dB_a}{dt} = -N^2 w_a - \left(\frac{dB_g}{dt}\right)_a - \left\{ \left(\frac{dB_g}{dt}\right)_g \right\}$$

$$\frac{du_a}{dt} = -f e_z \times u_a - \nabla_h \tilde{p}_{aa} - \left(\frac{du_g}{dt}\right)_a - \left\{ \nabla_h \tilde{p}_{ag} + \left(\frac{du_g}{dt}\right)_g \right\}$$

$$\frac{dw_a}{dt} = B_a - \frac{\partial \tilde{p}_{aa}}{\partial z} - \left\{ \frac{\tilde{p}_{ag}}{\partial z} \right\}$$

Additional material

Forcing terms

- Large scale balanced forcing leading contributor to gravity wave activity
- T=0 s

Balanced part of horizontal divergence: Omega equation

Total horizontal divergence includes balanced part

$$\delta_{total} = \delta_{unbal} + \delta_{bal}$$

• Subtract balanced part using omega equation (Hoskins et al. (1978), Danioux et al. (2012))

$$\Rightarrow \delta_{unbal} = \delta_{total} - \delta_{bal}$$

$$= \nabla_h \cdot \boldsymbol{u_a} - \delta_{bal}, \text{ with } \delta_{bal} = -\frac{\partial w_{bal}}{\partial z}$$

$$\nabla_h^2 w_{bal} = -\frac{2}{N^2} \nabla_h \cdot \boldsymbol{Q}, \text{ with } \boldsymbol{Q} = \nabla_h \boldsymbol{u_g} \cdot \nabla_h b_g$$

Additional material

Balanced part of horizontal divergence: Omega equation

- 一司