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Introduction and Motivation

Orographic and convective sources of inertia-gravity waves (IGW) well

understood (Fritts (2003))

Spontaneously emitted GWs active field of research (Cámara and Lott

(2015), ...)

Observation identify increased IGW activity in jet exit regions (e.g.

Plougonven and Zhang (2014))

GW emission embedded in various atmospheric processes
Need for controllable, repeatable and simplified laboratory
experiments: rotating annulus

Koch and OHandley (1997)
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Introduction and Motivation

Differentially heated rotating annulus experiment:

Finite volume code (cylFloit) to simulate experiment using Boussinesq
approximation (Borchert et al. (2015))
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Introduction and Motivation

Annulus simulations show clear GW activity (Borchert et al. (2014))

Further understanding of GW source processes: tangent linear analysis
(see Snyder et al. (2009), Wang and Zhang (2010))

⇒ Is there some internal forcing of GWs by the balanced flow?
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Source mechanism of gravity wave emission

Decomposition of flow into geostrophic and ageostrophic part
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Tangent Linear Analysis

Linearisation of unbalanced flow about balanced flow: Principle

Decomposition into balanced (large) and unbalanced (small) part

x = x̃ + x ′ with |x ′| << |x̃ | (Unbalanced part≡gravity waves)

Tangent linear evolution of x’

∂x ′

∂t
= L(x̃)x ′ + F (x̃)

with a linear operator L(x̃) and a balanced forcing term F (x̃)

Unbalanced component is integrated separately within each time step

Balanced part serves as background of the tangent linear model

Balanced forcing leading contributor to the gravity wave
activity?
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Results

Problem: Instabilities at side walls

linear model diverges after about 4-5 s of integration time

Exponential growth rate at outer (and inner) side walls
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Results

Suppress growth at side wall: Multiplication with window function

f (x) =


1, |x | ≤ βLy
1
2

{
1 + cos

[
π(|x |−βLy )

Ls

]}
, βLy < |x | ≤ [β + γ(1− β)] Ly

0, else
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Results

Comparison of horizontal divergence

Initialising linear model with zero unbalanced part

Full forcing

T=22 s (Ω = 0.08 rad/s, rotation period ∼ 79 s )

nonlinear model linear model
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Results

Comparison of horizontal divergence

Initialising linear model with x ′init = x − x̃

T=0 s

nonlinear model linear with forcing linear without forcing
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Results

Comparison of horizontal divergence

Initialising linear model with x ′init = x − x̃

T=10 s

nonlinear model linear with forcing linear without forcing
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Results

Comparison of horizontal divergence
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Results

Comparison of horizontal divergence

Initialising linear model with x ′init = x − x̃

T=20 s

nonlinear model linear with forcing linear without forcing
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Results

Comparison of horizontal divergence

Initialising linear model with x ′init = x − x̃

T=30 s

nonlinear model linear with forcing linear without forcing
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Conclusions and Outlook

Conclusion:

Increased GW activity within the baroclinic wave and close to the
inner cylinder wall

Tangent linear analysis to gain further understanding of the GW
source mechanism

Window function to suppress growth rate at side walls

Significant internal forcing of GW by the balanced flow

Outlook:

Extract balanced part of horizontal divergence: omega equation

Characterizing wave properties (~k ,A, ..)
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Cámara, a. D. and F. Lott (2015, Mar). A parameterization of gravity waves emitted by fronts and jets. Geophysical Research
Letters 42(6), 2071–2078.

Danioux, E., J. Vanneste, P. Klein, and H. Sasaki (2012, Apr). Spontaneous inertia-gravity-wave generation by
surface-intensified turbulence. Journal of Fluid Mechanics 699, 153–173.

Fritts, D. C. (2003). Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics 41(1).

Hoskins, B. J., I. Draghici, and H. C. Davies (1978). A new look at the omega-equation. Quarterly Journal of the Royal
Meteorological Society 104, 31–38.

Koch, S. E. and C. OHandley (1997). Operational Forecasting and Detection of Mesoscale Gravity Waves. Weather and
Forecasting 12(2), 253–281.

Plougonven, R. and F. Zhang (2014, Jan). Internal gravity waves from atmospheric jets and fronts. Reviews of
Geophysics 52(1), 33–76.

Snyder, C., R. Plougonven, and D. J. Muraki (2009). Mechanisms for Spontaneous Gravity Wave Generation within a Dipole
Vortex. Journal of the Atmospheric Sciences 66(11), 3464–3478.

Wang, S. and F. Zhang (2010). Source of Gravity Waves within a Vortex-Dipole Jet Revealed by a Linear Model. Journal of the
Atmospheric Sciences 67(5), 1438–1455.

Steffen Hien Gravity waves in the rotating annulus 05/17/2016 15 / 19



Additional material

Tangent linear annulus equations

dBa

dt
= −N2wa −

(
dBg

dt

)
a
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dBg
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Additional material

Forcing terms

Large scale balanced forcing leading contributor to gravity wave
activity

T=0 s

forcing of u forcing of v forcing of b
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Additional material

Balanced part of horizontal divergence: Omega equation

Total horizontal divergence includes balanced part

δtotal = δunbal + δbal

Subtract balanced part using omega equation (Hoskins et al. (1978),

Danioux et al. (2012))

⇒ δunbal = δtotal − δbal

= ∇h · ua − δbal , with δbal = −∂wbal

∂z

∇2
hwbal = − 2

N2
∇h ·Q, with Q = ∇hug · ∇hbg
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Additional material

Balanced part of horizontal divergence: Omega equation

δtotal δunbal δbal
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