

Recent Improvements to Resolved and Parameterized Gravity-Wave Dynamics in NAVGEM, the Navy's Global Numerical Weather Prediction System

Steve Eckermann¹, Jun Ma², Dave Broutman², Harold Knight², James D. Doyle³, Kevin C. Viner³, John P. McCormack¹, Timothy R. Whitcomb³, Timothy F. Hogan³, Karl W. Hoppel⁴, David D. Kuhl⁴, Benjamin C. Ruston³, Nancy L. Baker³, Ronald B. Smith⁵, David C. Fritts⁶, Michael J. Taylor⁷, Andreas Dörnbrack⁸, P.-D.Pautet⁷, B. P. Williams⁶ and K. Bossert⁶

- 1. Space Science Division, Naval Research Laboratory, Washington, DC
- 2. Computational Physics, Inc., Springfield, Virginia
- 3. Marine Meteorology Division, Naval Research Laboratory, Monterey, CA
- 4. Remote Sensing Division, Naval Research Laboratory, Washington, DC
- 5. Department of Geology and Geophysics, Yale University, New Haven CT
- 6. GATS, Inc., Boulder CO
- 7. Department of Physics, Utah State University, Logan UT
- 8. German Aerospace Center (DLR), Oberpfaffenhofen, Germany

This work is/was supported by:

- The Chief of Naval Research (CNR) through the NRL base 6.1 and 6.2 research program
- The Office of Naval Research (ONR)
- The National Science Foundation
- The Oceanographer of the Navy

Auckland Island Archipelago

DEEPWAVE Research Flight 23 14 July 2014

Outbound RF23 Flight Leg

Slide 6

NAVGEM Reanalyses for DEEPWAVE Austral Winter (T119L74 & T425L74)

Modeled Wavefield Response in MLT Airglow 0700 UTC

Maximum Wavefield Steepness in Fourier-Ray "Hindcasts"

(a) Maximum Steepness 2014071406 V2

Inbound RF23 Flight Legs

Inbound AMTM Imagery

Slide 14

Large Migrating Semidiurnal Tide in MLT Reanalysis at 51°S NAVGEM Reanalysis Wind on 6.41x10⁻³ hPa (~82km) 360 (a) Zonal Wind 120 100 270 Longitude (° E) 80 60 180 40 ms 20 0 90 -20-400 (b) Meridional Wind 75 50 270 Longitude (° E) 25 0 180 ms -25-5090 -75-100

12

Date and Time (hours UTC)

12

00

7/16

12

00

7/15

00

7/12

12

00

7/13

12

00

7/14

FR Modeled Breaking Heights

Time Evolution of Wavefields

Huge MLT Driving Effects

- Offline calculation using linear saturation theory
- Layer-averaged mean flow accelerations ~-350 m s⁻¹ hour⁻¹
- Layer-averaged dynamical heating rates ~ 8 K hour⁻¹

Conclusions

- RF23 supports important role of small subantarctic mountains to middle atmosphere momentum (and heat!) budget in austral winter (Alexander et al. 2009; McLandress et al. 2012; Alexander and Grimsdell, 2013)
- How does wavefield stay linear up to ~78 km before breaking?
 - 1. Spectral filtering of wavefield content (turning points & directional critical levels)
 - 2. Horizontal geometrical spreading of wavefields
 - 3. Nonhydrostatic downstream dispersion/spreading

=> Only nonhydrostatic solutions accurate: corresponding hydrostatic solutions are grossly inaccurate (parameterization implications)

- Huge MLT drag and heating rates (consistent with AMTM "warm up" in final overpass) with strong semidiurnal tidal modulation
- The "right" linear gravity-wave models <u>CAN</u> be accurate up to high altitudes right up to point of incipient wave breaking
- see Eckermann et al., J. Atmos. Sci., submitted, 2016.

BACKUP SLIDES

Slide 20

Model MLT Wavefields 0700 UTC

Inbound AMTM Imagery

FR Model Momentum Fluxes

Model MLT Wavefields 1000 UTC

Linear Solution Approximations

Hogan, T. F., M. Liu, J. A. Ridout, M. S. Peng, T. R. Whitcomb, B. C. Ruston, C. A. Reynolds, S. D. Eckermann, J. R. Moskaitis, N. L. Baker, J. P. McCormack, K. C. Viner, J. G. McLay, M. K. Flatau, L. Xu, C. Chen, and S. W. Chang (2014), The Navy Global Environmental Model, Oceanography, 27(3), 116-125, dx.doi.org/10.5670/oceanog.2014.73.

ATMOSPHEIC BACKGROUNDS:

NAVGEM 0-100 km Reanalysis for DEEPWAVE Austral Winter

Global Model Physics Modules Needed for Upper Levels

- Shortwave heating due to UV O₂ and O₃ photolysis
- Non-LTE CO₂ longwave cooling to space
- Exothermic Chemical Heating
- Gravity-Wave Drag (Momentum Deposition)
 - Orographic Sources of Gravity Wave Drag
 - Nonorographic Sources of Gravity Wave Drag
 - Frictional Heating (KE Dissipation)
 - Momentum/Heat Mixing due to GW-Induced Turbulence

The Deep Propagating Gravity Wave Experiment

(a) RMS AIRS Brightness Temperature: June-July 2003-2011 2.5 hPa

DEEPWAVE Southern Climatology

DEEPWAVE RF23

