Gravity Wave and Kelvin Wave Activity in the Tropical Lower Stratosphere

Thomas Birner

with contributions by: Anne (Sasha) Glanville, Jeremiah Sjoberg, Richard Johnson

Department of Atmospheric Science, Colorado State University

2016 SPARC Gravity Wave Symposium

Multiscale Dynamics in the TTL

- Planetary-scale circulations (e.g. adiabatic cooling by Brewer-Dobson upwelling)
- Convectively coupled equatorial waves (broad spectrum, incl. Kelvin waves)
- Convection (incl. large-scale indirect temperature response)
- Horizontal mixing (due to Rossby wave breaking) with extratropical lowermost stratosphere
- Vertical mixing, e.g. due to overshooting convection, breaking gravity waves

Upper Troposphere / Lower Stratosphere

Gettelman et al. exUTLS review paper, 2011

Vertical Transport just above the Tropical Tropopause: Residual Circulation Upwelling vs. (vertical) Mixing

Glanville & Birner 2016, Atmos. Chem. Phys. Discuss.

Mote et al., 1996:

Tape Recorder Signal in H₂O

An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor

In other words, air is "marked," on emergence above the highest cloud tops, like a signal recorded on an upward moving magnetic tape.

cold point tropopause Mote et al., 1996:

Tape Recorder Signal in H₂O

Temperature

Μ

Μ

Α

J Month S

0

Ν

D

H,O

196

194

192

190

 \mathbf{x}

An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor

In other words, air is "marked," on emergence above the highest cloud tops, like a signal recorded on an upward moving magnetic tape.

Synthetic tape recorder by solving simple 1-d transport Eq., similar to Mote et al. (1998), but with seasonally varying transport coefficients

 $\partial_t \overline{\chi} = -\overline{\omega}^* \partial_p \overline{\chi} + \partial_p (K_p \partial_p \overline{\chi}) - \alpha_p (\overline{\chi} - \overline{\chi}_{ML}) + S$

vertical advection

vertical mixing/diffusion

horizontal mixing/dilution

Modeled vs. Observed Tape Recorder Signal

Vertical mixing as important as vertical advection!

quadrupled(!) vertical mixing compared to Mote et al (but same vertical advection & horizontal mixing)

(for ERAi, optimal solution requires 10 times vertical mixing and 5 times horizontal mixing)

Synthetic tape recorder from 1-d transport model in isentropic coordinates → vertical mixing mostly negligible (but horizontal mixing important during boreal spring / summer)

 \rightarrow vertical mixing contribution in p-coordinates largely due to adiabatic processes (e.g. gravity wave breaking)

$$\partial_t \overline{\chi} + \omega_{\text{eff}} \partial_p \overline{\chi} = 0$$
 with $\omega_{\text{eff}} \approx \overline{\omega}^* + \partial_p \overline{\omega' \chi'} (\partial_p \overline{\chi})$

$$\partial_t \overline{\chi} + \omega_{\text{eff}} \partial_p \overline{\chi} = 0$$
 with $\omega_{\text{eff}} \approx \overline{\omega}^* + \partial_p \overline{\omega' \chi'} (\partial_p \overline{\chi})^{-1}$

Effective transport velocity for tracer in isentropic coordinates:

$$\partial_t \overline{\chi}^* + Q_{\text{eff}} \partial_\theta \overline{\chi}^* = 0$$

$$\partial_t \overline{\chi} + \omega_{\text{eff}} \partial_p \overline{\chi} = 0$$
 with $\omega_{\text{eff}} \approx \overline{\omega}^* + \partial_p \overline{\omega' \chi'} (\partial_p \overline{\chi})^{-1}$

Effective transport velocity for tracer in isentropic coordinates:

$$\partial_t \overline{\chi}^* + Q_{\text{eff}} \partial_\theta \overline{\chi}^* = 0$$

Quasi-adiabatic vertical mixing (e.g. due to gravity wave breaking):

$$\overline{\omega'\theta'}\approx\overline{\omega'\chi'}\frac{\partial_p\overline{\theta}}{\partial_p\overline{\chi}}$$

$$\partial_t \overline{\chi} + \omega_{\text{eff}} \partial_p \overline{\chi} = 0$$
 with $\omega_{\text{eff}} \approx \overline{\omega}^* + \partial_p \overline{\omega' \chi'} (\partial_p \overline{\chi})^{-1}$

Effective transport velocity for tracer in isentropic coordinates:

$$\partial_t \overline{\chi}^* + Q_{\text{eff}} \partial_\theta \overline{\chi}^* = 0$$

Quasi-adiabatic vertical mixing (e.g. due to gravity wave breaking):

$$\overline{\omega'\theta'}\approx\overline{\omega'\chi'}\frac{\partial_p\overline{\theta}}{\partial_p\overline{\chi}}$$

Diabatic heating in steady state:

$$\overline{Q} \approx \overline{\omega}^* \partial_p \overline{\theta} + \partial_p \overline{\omega' \theta'}$$

$$\partial_t \overline{\chi} + \omega_{\text{eff}} \partial_p \overline{\chi} = 0$$
 with $\omega_{\text{eff}} \approx \overline{\omega}^* + \partial_p \overline{\omega' \chi'} (\partial_p \overline{\chi})^{-1}$

Effective transport velocity for tracer in isentropic coordinates:

$$\partial_t \overline{\chi}^* + Q_{\text{eff}} \partial_\theta \overline{\chi}^* = 0$$

Quasi-adiabatic vertical mixing (e.g. due to gravity wave breaking):

$$\overline{\omega'\theta'}\approx\overline{\omega'\chi'}\frac{\partial_p\overline{\theta}}{\partial_p\overline{\chi}}$$

Diabatic heating in steady state:

$$\overline{Q} \approx \overline{\omega}^* \partial_p \overline{\theta} + \partial_p \overline{\omega' \theta'}$$

$$\overline{Q} \approx Q_{\text{eff}} \longrightarrow \overline{\omega' \chi'} \approx \left[\omega_{\text{eff}} - Q_{\text{eff}} \left(\partial_p \overline{\theta} \right)^{-1} \right] \frac{(\partial_{\overline{\theta}} \overline{\chi})^2}{\partial_{\overline{\theta}} \overline{\theta} \overline{\chi}}$$

$$\overline{\omega'\chi'} \approx \left[\omega_{\text{eff}} - Q_{\text{eff}} \left(\partial_p \overline{\theta}\right)^{-1}\right] \frac{(\partial_{\overline{\theta}} \overline{\chi})^2}{\partial_{\overline{\theta}\overline{\theta}} \overline{\chi}}$$

Conclusions Part I

- Vertical mixing near tropical tropopause has been pointed at (e.g. Flannaghan & Fueglistaler, 2014), but is often neglected
- We find important contribution by quasi-adiabatic vertical mixing (due to gravity wave breaking?) to transport just above the tropical tropopause
- Insights into vertical mixing by comparing effective vertical transport in pressure vs. isentropic coordinates
- Implications for cloud formation & dehydration (e.g. in trajectory simulations as in Jensen & Pfister, 2004+)

Tropical Lower Stratospheric Kelvin Wave Momentum Flux from Radiosoundings

Sjoberg, Birner, Johnson, in preparation

Thomson (Kelvin) Waves:

Monday, 17th March 1879. Professor KELLAND, President, in the Chair. The following Communications were read :— 1. On Gravitational Oscillations of Rotating Water. By Sir William Thomson.

Kim & Son (2012): Kelvin wave composite from GPS data:

MJO modulation of TTL dynamics (results from DYNAMO): Gan Island

Erin Dagg (MS thesis)

MJO modulation of TTL dynamics (results from DYNAMO): Manus Island

Erin Dagg (MS thesis)

Following Holton et al. 2001 (idea from Kousky & Wallace 1971 and Sato & Dunkerton 1997):

Intrinsic frequency

$$\overline{u'w'} = -\frac{R\omega_d}{HN^2}Q_{uT}$$

Vertical momentum flux

u'-T' Quadrature spectrum

Kelvin/gravity wave dispersion relation:

$$\omega_d = \omega - k\overline{u} = -\frac{kN}{m}$$

Wallace & Kousky (1968)

Example:

Gan Island (0.7°S, 73.2°E) DYNAMO, January 2012

High-vertical resolution radiosoundings!

T' (shading, 1 K) & u' (contours, 3 m/s)

Climatology (2003–2013) for Manus ARM sounding site (2.0°S, 147.4°E)

QBO composite (2003–2013) for Manus ARM sounding site (2.0°S, 147.4°E)

 \rightarrow Kelvin wave momentum flux drives E'y \rightarrow W'y transition (as expected) and is suppressed in westerly QBO phase

MJO modulation of lower stratospheric Kelvin wave activity?

 \rightarrow inconclusive (difference not statistically significant)

Manus ARM sounding site (2.0°S, 147.4°E)

Conclusions – Part II

• Quadrature u'-T' spectrum applied to radiosoundings \rightarrow Kelvin wave momentum flux

- Strongest lower stratospheric wave activity during boreal winter/spring (inferred using Manus site in west pacific)
- Possibly modulation by MJO, but inconclusive
- Kelvin wave driving of QBO easterly→westerly transition confirmed (cf. many previous studies – e.g. Sato & Dunkerton, 1997; Ern & Preusse, 2009)