Contributions of moist convection and internal gravity waves to building the atmospheric "-5/3" kinetic energy spectra

Y. Qiang Sun¹, Richard Rotunno² and Fuqing Zhang¹

¹ Penn State University ² NCAR

Power Spectra of Wind and Potential Temperature From Aircraft Measurements

Nastrom and Gage (1985)

Baroclinic wave simulations: Dry vs. Moist

Simulated dry baroclinic Jets have a -3 slope, while moist experiments show a transition at mesoscale.

Gravity waves in baroclinic wave simulations: Dry vs. Moist

DRY

MOIST

(Uccellini and Koch 1987; Zhang 2004 JAS) (Wei and Zhang 2014 JAS; 2015 JAMES)

- ✓ Convection and gravity waves key to flatten the meso/small-scale spectral slope.
- Adjustment and gravity waves likely play a key role in the error propagation across scales, as hypothesized in Zhang et al. (2007 JAS).

Difference Total Energy (DTE) Growth: Dry vs. Moist

$$DTE = \frac{1}{2} \sum \left[(\delta u)^2 + (\delta v)^2 + \kappa (\delta T)^2 \right]$$

Sun and Zhang (2016 JAS)

 \checkmark Error growth behavior is possibly linked to the spectral slope.

 Implication of spectral slopes on intrinsic predictability consistent with previous study.

Time evolution of our simulated convective systems

Moist convection and gravity waves generated by convection

w > 0.1 m/s, cyan; dbz > 25, black line; potential temperature, gray

w'T

Kinetic Energy Spectra in our Simulation

Spectra Budget Analysis for Kinetic Energy

$$\frac{\partial E(k)}{\partial t} = T(k) + B(k) + Flux(k) + D(k)$$

T(k): Energy transfer between different scales

B(k): Energy converted from potential energy, buoyancy production

Flux(k): Energy exchange between different vertical levels, induced by convection and vertical propagating gravity waves

Spectra budget analysis at different levels

Kinetic Energy Spectra in Experiment with Coriolis effect

Spectra budget analysis at different levels (Coriolis experiment)

Concluding Remarks

- Moist convection and the gravity waves they generated are able to generate a background mesoscale kinetic energy spectrum with a -5/3 slope.
- Three physical processes actively contribute to the formation of the kinetic energy spectrum.
- Strong communications exist between different height levels, due to vertical energy fluxes induced by convection and the gravity waves.

□ The classical cascade picture can not be applied to our simulation.

