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[1] The effectiveness of the ensemble Kalman filter (EnKF) for thermally forced
circulations is investigated with simulated observations. A two-dimensional, nonlinear,
hydrostatic, non-rotating, and incompressible sea breeze model is developed for this
purpose with buoyancy and vorticity as the prognostic variables. Model resolution is 4 km
horizontally and 50 m vertically. Forcing is maintained through an explicit heating
function with additive stochastic noise. Pure forecast experiments reveal that the model
exhibits moderate nonlinearity. The strongest nonlinearity occurs along the sea breeze
front at the time of peak sea breeze phase. Considerable small-scale error growth occurs at
this phase for vorticity, while buoyancy is dominated by large-scale error as the direct
result of the initial condition uncertainty. In the EnKF experiments, simulated buoyancy
observations (with assumed error of 10�3 ms�2) on land surface with 40-km spacing
are assimilated every 3 hours. As a result of their resolution, the observations naturally
sample the larger-scale flow structure. At the first analysis step, the filter is found to
remove most of the large-scale error resulting from the initial conditions and the domain-
averaged error of buoyancy and vorticity is reduced by about 83% and 42%, respectively.
Subsequent analyses continue to remove error at a progressively slower rate and the
error ultimately stabilizes within about 24 hours for both variables. At later model times,
while mostly large-scale buoyancy errors due to the stochastic heating uncertainty are
effectively removed, the filter also performs well at reducing smaller-scale vorticity errors
associated with the sea breeze front. This is an indication that observations also contain
useful small-scale information relevant at the scales of frontal convergence.
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1. Introduction

[2] One of the most prominent areas of investigation in
modern numerical weather prediction is data assimilation,
the process of utilizing the information content of observa-
tions to improve initial conditions for numerical models.
Approaches to meteorological data assimilation generally
fall into two main categories: the variational techniques
(3DVAR and 4DVAR) and the ensemble-based sequential
techniques (most notably the ensemble Kalman filter, EnKF).
The variational methods (especially 4DVAR with its distinct
advantage over 3DVAR due to its dynamical error covariance
information) is today accepted as the more established
method owing to its 20-year history of research at various
scales of atmospheric phenomena and also to its current
operational status at the European Centre for Medium-Range
Weather Forecasts (ECMWF) [Rabier et al., 2000] and
Météo-France [Gauthier and Thépaut, 2001]. For a detailed
discussion of the technique, see, for instance, Zupanski et al.
[2002], and the references therein.
[3] The EnKF, on the other hand, is a relatively new

method that was first proposed in the geophysical literature

by Evensen [1994]. As a result of its several advantages
over 4DVAR, the EnKF has received an increasing amount
of research attention in recent years. One such advantage is
the fact that tangent linear and adjoint versions of the
forecast model are not required, leading to a much simpler
implementation process. In addition, the EnKF is naturally
integrated within an ensemble-based forecast model, pro-
viding sample estimates of very valuable flow-dependent
forecast and analysis covariances with much less cost
than fully integrating the covariance matrix forward in
time. In addition, from a Bayesian perspective, the
ensemble-mean state of the analysis provided by the
EnKF represents the maximum likelihood state and serves
as a direct estimate of the optimal solution to a variance-
minimizing estimation problem, which makes the EnKF
appealing statistically.
[4] Tests of the standard form of the EnKF have shown

that the scheme performs well for large-scale models
[Evensen and van Leeuwen, 1996; Evensen, 1997]. Today,
meteorological applications of the EnKF to large-scale
flows have nearly reached the point of operational testing
[Mitchell et al., 2002; Houtekamer et al., 2004], while
assessments have also been performed for massively paral-
lel ocean circulation models [Keppenne and Rienecker,
2002]. While results from the above-mentioned studies are
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very encouraging and almost complete at global and syn-
optic scales, there is much progress to be made before the
EnKF is established as a viable assimilation technique for
numerical modeling of meteorological phenomena at
smaller scales, where applications of the filter have been
much more limited due to the implementation challenges
introduced by fully three-dimensional flow characteristics,
highly nonlinear microphysical processes, and much more
complicated boundary condition issues. At regional and
mesoscales, Zhang et al. [2005] have shown for an explo-
sive winter storm case that the EnKF is very effective in
keeping the analysis close to the truth simulation while also
showing that the most effective error reduction occurred
at larger scales compared to the smaller, marginally
resolvable scales where reduction in error was less
effective. Only in recent years have there been attempts
to assimilate Doppler radar observations into cloud-scale
supercell models, albeit with partial success, first through
simulated observations [Snyder and Zhang, 2003; Zhang
et al., 2004], and then subsequently using real observa-
tions [Dowell et al., 2004].
[5] Another very important limitation is the fact that all of

the synoptic and mesoscale phenomena that have been put
under the scrutiny of EnKF research to date can be regarded
as a special class of flows exhibiting free dynamics; i.e.,
they do not proceed under the dominant influence of an
external forcing. There is thus a wide range of dynamical
systems, commonly known as chaotic forced-dissipative
systems that range from the sea breeze circulation at the
smaller-scale end of the spectrum to the climate at very
large scales, that have not yet been subjected to assimilation
experiments with the EnKF.
[6] There are two possible lines of reasoning to suggest

that chaotic forced-dissipative systems may exhibit a suffi-
ciently dispersive nature to warrant the application of data
assimilation. The first is of an empirical nature: daily
experience with local phenomena such as the sea breeze
or the mountain breeze circulations suggests that the timing,
strength, and penetration properties of the nonlinear frontal
structures, as exhibited through cloud formation, convective
activity, changes in air quality, and/or strong wind shifts,
can differ significantly from day to day even under seem-
ingly similar synoptic conditions [Simpson, 1994; Miller et
al., 2003]. The second argument is based on theoretical
evidence related to the chaotic nature of nonlinear, forced-
dissipative systems. At the large-scale end of atmospheric
motions with timescales on the order of months to millen-
nia, it has been shown that, even for severely truncated
models, multiple stationary solutions exist with varying
stability, and transitions between such solutions occur as a
result of changes in the forcing parameters. There is in fact a
plethora of published material on this topic; for an introduc-
tory discussion see, for instance, Charney and DeVore
[1979], Vickroy and Dutton [1979], andMitchell and Dutton
[1981]. At the smaller scales, a similar behavior has been
recently demonstrated for the sea and land breeze by Feliks
[2004] with a two-dimensional model. Moreover, due to the
strong dependence of the chaotic nature of forced-dissipative
systems on the forcing, one might also conjecture that the
predictability of such systems should be closely linked to the
parameter space that controls the forcing and the system’s
response to forcing.

[7] The purpose of this paper is to address the feasibility
of data assimilation techniques, and specifically of the
EnKF, for nonlinear forced-dissipative atmospheric phe-
nomena. To this end, the sea breeze circulation is chosen
as the prototype of a strongly forced system, both because
of its relatively simple structure and because of its relevance
to day-to-day operational forecasting. To keep the problem
simple, the sea breeze is modeled as the nonlinear response
to a specific oscillating interior heat source in two dimen-
sions, as in the linear theory of Rotunno [1983].
[8] The structure of this article is designed as follows: We

briefly give some relevant background information on the
EnKF in section 2. Section 3 describes the two-dimensional
sea breeze model. Section 4 contains our analysis of the
perfect-parameter results. We conclude with a summary and
conclusions in section 5.

2. Ensemble Kalman Filter

[9] The Kalman filter (KF), in its original form, as
developed by Kalman [1960], is an optimal (in the linear
limit) Bayesian filter. It combines information from obser-
vations and flow-dependent forecast covariances to update a
given forecast state under the constraint of minimizing
variance. As a result of its appealing sequential form, the
KF quickly became one of the most widely used and
investigated estimation methods in both engineering and
science literature [the reader is referred to Gelb [1986] for a
rigorous yet accessible introduction to the subject]. A
critical issue about the original form of the KF is that the
time integration of the error covariance matrix requires two
successive matrix multiplications. Each of these operations
involves matrices of the dimension of the state vector
which, for meteorological applications, is usually on the
order of 106–107. With today’s computer resources, such a
computation is not feasible.
[10] To address this problem, the ensemble Kalman

filter (EnKF) was developed as a modification to the
KF which uses an ensemble of model forecasts to directly
estimate the background error covariance structure. As
such, the ensemble can be viewed as a collection of
samples that provides a sampled estimate of the mean
state and the covariance matrix. The KF equations are
modified to reflect the update of the ensemble mean,
while the time integration of the covariance matrix is
performed implicitly through the time integration of
individual ensemble members:

xa ¼ xf þ K y0 � Hxf
� �

;

K ¼ PfHT HPfHT þ R
� ��1

:
ð1Þ

Here, xf and P f represent the forecast (background) mean
state and covariance matrix (sampled directly from the
ensemble perturbations), respectively, while xa represents
the updated analysis mean state. Observations are repre-
sented by the observation vector y0 and observational error
matrix R. The mapping between model space and
observational space is accomplished through the matrix H.
In this form, H represents the first-order linear approxima-
tion to a possibly nonlinear observation function H. The
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matrix K is known as the Kalman gain matrix and contains
the coefficients of the linear combination of forecast state
vector and observations. This ‘‘standard’’ EnKF formulation
was first proposed by Evensen [1994] and further tested by
Evensen and van Leeuwen [1996] and Evensen [1997] who
concluded that the scheme performed well for large-scale
models. For more background on the application of the
EnKF in the atmospheric sciences, see, for example,
Mitchell and Houtekamer [2000], Keppenne [2000], Hamill
and Snyder [2000], Anderson [2001], Keppenne and
Rienecker [2002], Snyder and Zhang [2003], Anderson
[2003], and Zhang et al. [2004].
[11] Sequential processing of observations leads to con-

siderable simplification of the analysis scheme and is
therefore an attractive alternative to assimilating the entire
observation vector at once [e.g., Whitaker and Hamill,
2002; Snyder and Zhang, 2003]. This is possible because
observation errors are assumed to be independent so that the
order in which observations are processed does not influ-
ence the final estimate of the state (as long as the analysis
error covariance, Pa, is updated at each step). For a single,
scalar observation y0, the term PfHT of equation (1)
becomes a column vector c of dimension of the state, while
the term HP fHT + R becomes a scalar d. Updating of the
ensemble mean is performed similar to equation (1) but by
replacing the Kalman gain K by its simpler form as follows:

xa ¼ xf þ c y0 � Hxf
� �

=d : ð2Þ

[12] In addition to updating the ensemble mean, the
covariance matrix also needs to be updated, which is
achieved through updating the difference of each ensemble
member from the mean. Following the ensemble square-
root filter (EnSRF) formulation proposed by Whitaker and
Hamill [2002], the update for the difference of each ensem-
ble member from the mean (perturbations) is calculated by

xa � xa ¼ I� b ĉ=d̂
� �

H
h i

xf � xf
� �

; ð3Þ

where b = [1 + (r/d̂)1/2]�1, ĉ and d̂ are sample estimates of c
and d, and r is a scalar representing the observational error
at the respective observation location. The analysis step
defined in this manner is an alternative to perturbing
observations in the analysis step of the EnKF [Burgers et
al., 1998; van Leeuwen, 1999].
[13] In passing we note that the use of the acronym

‘‘EnKF’’, in its strictest sense, refers to the ‘‘standard’’
perturbed-observations formulation of the filter. However,
because of the fact that our goal here is not to draw the
attention to any differences between perturbed-observation
and deterministic filters but merely use the EnSRF due to its
both practical and theoretical advantages, we decided to use
the acronym ‘‘EnKF’’ throughout the paper to represent the
broader class of ensemble-based Kalman filters.
[14] Another modification that is commonly employed

within recent EnKF applications pertains to the rank defi-
ciency problem associated with undersampling when using
small ensembles. Houtekamer and Mitchell [1998] noted
that the EnKF analysis could be improved by preventing
distant observations from influencing the update of a grid
point. They argued that this was mainly due to the fact that

small-sized ensembles tended to overestimate covariances
between greatly separated grid points and, as a remedy,
applied a cutoff radius beyond which covariances were not
calculated. Commonly known as covariance localization,
Houtekamer and Mitchell [2001] have since experimented
with a more sophisticated Schur product approach where the
ensemble-based covariance estimates are multiplied element
by element with a distance-dependent correlation function
that varies from 1.0 at the observation location to 0.0 at
some predefined cutoff distance (a widely used such corre-
lation function is Gaspari and Cohn’s [1999] compactly
supported fifth-order function). Houtekamer and Mitchell
[2001] maintain that ‘‘the effect of localization is to increase
the effective size of the ensemble’’. For this study, we have
chosen to employ Gaspari and Cohn’s [1999] compactly
supported fifth-order function as a means to localize the
covariance structure with no posterior covariance inflation
applied.

3. Sea Breeze Model and Filter Design

3.1. Model Numerics

[15] As in the linear theory of Rotunno [1983], an
idealized prototype problem is adopted in which the sea
breeze circulation is modeled as the response to a specified
oscillating heat source in the fluid interior. For simplicity,
the flow is taken to be Boussinesq with only hydrostatic and
non-rotating disturbances in two dimensions. The equations
of motion can then be written in vorticity-stream function
form as

@h0

@t
þ uþ u0ð Þ @h

0

@x
þ w0 @h

0

@z
þ @b0

@x
¼ kh

@2h0

@z2
;

@b0

@t
þ uþ u0ð Þ @b

0

@x
þ w0 @b

0

@z
þ N2w0 ¼ Qþ kb

@2b0

@z2
;

ð4Þ

where u = (u0, w0) is the disturbance fluid velocity, h0 = @u0

@z is
the hydrostatic vorticity, and b0 = gq0/q0 is the Boussinesq
buoyancy. Here g is the acceleration of gravity and q = q0 +
qB(z) + q0(x, z, t) is the potential temperature, where q0 and qB
are reference and background potential temperatures,
respectively, while N2 = (g/q0)(@qB/@z) is the square of the
background Brunt-Väisälä frequency.
[16] Dissipation in the model is represented through the

vertical diffusion of vorticity and buoyancy, where kh and
kb are the constant eddy diffusion coefficients for h and b,
respectively. Free-slip and thermal insulation conditions are
applied at the lower boundary of the model domain by
setting both h0 and @b0/@z to zero at z = 0.
[17] Forcing takes the form of an explicit heating function

Q defined by

Q ¼ A0 coswt þ V tð Þ½ 	 1

2
þ 1

p
tan�1 x

x0

� �
e�z=z0

	 

: ð5Þ

Here, A0 is a constant heating amplitude; x0 and z0 are
horizontal and vertical length scales of heating, respec-
tively; w is the diurnal frequency; and z is a stochastic white
noise term. In this functional form, the initial time
corresponds to a maximum heating phase.
[18] Walter [2004] has shown through a scale analysis

that, for weak background wind u, the nonlinearity of the
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model is controlled by a non-dimensional amplitude param-
eter defined by e = A0(N

2wz0)
�1. His findings indicate that

the system begins to demonstrate nonlinear effects (devel-
oping density currents) for e > 0.8; for smaller values of e,
nonlinearity in the system remains weak. Following this
reasoning, then, the heating amplitude A0 becomes the
controlling parameter of nonlinearity when the other param-
eters N2, w, and z0 are kept constant. Moreover, it is
important to note that in a viscous system nonlinearity will
also be dependent on the strength of diffusion which is
measured by the non-dimensional Reynolds number Re =
wz0

2kh
�1. Although there is no direct connection between the

Reynolds number and the degree of nonlinearity in this
formulation, one can in general argue that the smaller the
Reynolds number becomes, the larger should be the critical
value of e where effects of nonlinearity begin to be
observed. In other words, all other parameters being equal,
larger vertical diffusivity would require a larger heating
amplitude to force the flow into the nonlinear regime.
[19] The prognostic equations are integrated using leap-

frog time differencing with a weak Asselin time filter
[Asselin, 1972] for all terms except the vertical diffusion.
The diffusion terms are integrated using trapezoidal time
differencing. All spatial derivatives are computed using
second-ordered centered differences, and a weak horizontal
filter is included to help stabilize the steep gradients that
occur at the fronts. From a theoretical point of view, the
leapfrog scheme with the Asselin filter may not be the
optimal numerical integration technique for a stochastic
dynamical system [see, for instance, Ewald et al., 2004;
Penland, 1996]. However, our goal here is not to obtain the
most accurate numerical solution to the analytic sea breeze
equation (4). Rather, we consistently base our truth and
forecast integrations on the sea breeze system defined
through our numerics, time step, and noise handling.
[20] The horizontal (cross-shore) and vertical dimensions

of the forecast domain are 500 km and 3 km, respectively,
with the coast located at the center (at x = 0) and the land
located to the right of the coast. There are two Rayleigh-
damping sponge layers to the left and right of the forecast
domain, each of width 300 km, and another above the
forecast domain with a 2-km depth. Grid spacing is 4 km
horizontally and 50 m vertically, thus optimally resolving
the mesoscale properties of the sea breeze circulation while
marginally resolving the frontal structure.

3.2. Ensemble and Filter Characteristics

[21] A ‘‘climatological’’ initialization scheme was utilized
for this study. The key steps of this scheme are as follows:
(1) Using the sea breeze model and an initial background
state (zero perturbation vorticity and zero perturbation
potential temperature throughout the domain), a 15-day
hourly time series is produced. (2) To allow for the initial
adjustment from the background state, only days 4 through
15 are used for choosing initial states of ensemble members.
(3) Initial states are chosen randomly from the available
time series with a normal probability distribution centered at
the initial time of day (local noon or maximum heating
phase for this application) of the ensemble runs. In other
words, the maximum heating states within the 15-day time
series have the highest probability to be selected into the
ensemble and a standard deviation of 8 hours is used for the

normal distribution around the central maximum heating
state.
[22] In most of the experiments, an ensemble size of 50 is

used. In order to obtain a perfect ensemble, truth is taken as
one of the ensemble members. Unless noted otherwise in
the article, other properties of the filter chosen for this study
are: radius of influence of 100 grid points (400 km hori-
zontal and 5 km vertical), and simulated land surface
buoyancy observations with error 10�3 ms�2 and spacing
of 40 km.

4. Results

4.1. Model Behavior

[23] To begin, a demonstration of the mean-state behavior
of the sea breeze model will be presented for a moderately
nonlinear regime. No EnKF analysis is performed during
this run. Mean horizontal wind (u) is set at a weak value of
0.5 ms�1 and the Brunt-Väisälä frequency (N) is chosen to
be 10�2 s�1. For the heating profile, horizontal and vertical
length scales (x0 and z0) are set at 10 km and 500 m,
respectively. The vertical diffusion coefficients of buoyancy
and vorticity (kb and kh) are both chosen to be 0.25 m2s�1,
in order to have a Prandtl number Pr = kh/kb = 1. These
settings correspond approximately to a Reynolds number on
the order of 50–100 and indicate that the effects of vertical
diffusion on nonlinearity should be relatively small. A mean
value of 7 
 10�6 ms�3 is used for heating amplitude which
roughly corresponds to a value of 1.9 for the nonlinearity
parameter e. With this e, nonlinear features are expected to
be locally significant near the coast while the overall
nonlinearity is still expected to be moderate [Walter,
2004]. At higher heating amplitudes, the model becomes
numerically unstable. Finally, the standard deviation of the
stochastic heating amplitude is set at 4 
 10�6 ms�3,
resulting in an expected range of 0.8–3.0 for the nonline-
arity parameter e (although the actual influence of stochas-
ticity on nonlinearity is smaller than the suggested range
because of the effects of time filtering and diffusion).
4.1.1. Diagnosis of Sea Breeze and Land Breeze Cycles
[24] To demonstrate the model behavior, key stages of a

24-hour sea and land breeze cycle are presented in Figure 1.
Panels from top to bottom indicate the time evolution of the
corresponding sea/land breeze cycle, beginning with the
123-hour forecast time that corresponds to the onset of
the sea breeze and continuing with 6-hourly intervals until
the 141-hour forecast time that corresponds to the peak land
breeze.
[25] The sea breeze is triggered by the differential day-

time heating that reaches its maximum on land at the
120-hour (noon, maximum heating phase) forecast time (not
shown). At this time, while surface convergence and vertical
motion set up at the coast, surface winds do not yet indicate
the existence of a sea breeze circulation. At 123 hours
(Figures 1a and 1e) the low-level convergence and vertical
motion strengthen and the most intense convergence moves
inland as weak onshore surface winds develop across the
coastline. At 126 hours into the sea breeze cycle (not
shown), which coincides with the neutral heating phase, a
distinct frontal boundary forms at the leading edge of the sea
breeze circulation. The surface buoyancy over land reaches
its peak at this time, marking a 6-hour phase difference
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Figure 1. Evolution of the sea and land breeze cycles as observed through the distribution of buoyancy
(left panels, ms�2), vorticity (right panels, s�1), and the wind field (right panels, ms�1) within the forecast
domain at following forecast times: 123 hours (onset of the sea breeze, Figures 1a and 1e), 129 hours (peak
sea breeze, Figures 1b and 1f), 135 hours (onset of the land breeze, Figures 1c and 1g), and 141 hours (peak
land breeze, Figures 1d and 1h). Solid (dashed) contours indicate positive (negative) values. Contour
intervals are 0.004ms�2 (Figures 1a and 1b), 0.01ms�2 (Figures 1c and 1d), and 0.002 s�1 (Figures 1e–1h).
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between maximum heating and maximum temperature over
land. The associated buoyancy gradient continues to
strengthen the circulation well into the cooling phase of
the cycle, and both onshore and vertical winds reach their
peak values at 129 hours (Figures 1b and 1f). The frontal
boundary also matures and penetrates almost 100 km inland.
While sloping regions of ascent (over land) and descent
(over water) mark the ray paths of gravity waves forced by
the heating gradient across the coastline, note also that the
nonlinear convergence of the frontal boundary has led to a
significant gravity-wave signal extending upwards from the
boundary layer (Figures 1f and 1g).
[26] As the cooling phase progresses, the temperature

gradient across the coast becomes more negative and the
flow at the coast eventually reverses to produce a land
breeze. The time of peak land breeze is shown in Figures 1d
and 1h. Note that an offshore-propagating front and asso-
ciated gravity wave signal are again apparent. However,
comparison of the Figures 1c and 1d shows that the land
breeze front is significantly weaker than the front associated
with the sea breeze. This asymmetry in the intensity of the
land and sea breezes, which is also commonly observed in
real sea/land breezes [Simpson, 1994], is apparently the
result of the difference in stratification ahead of the respec-
tive fronts, with weak stratification ahead of the sea breeze
front and essentially unaltered background stratification
ahead of the land breeze [Walter, 2004].
4.1.2. Structure and Evolution of Ensemble Spread
and Covariance
[27] The distributions of standard deviation, as a measure

of ensemble spread, of variables buoyancy, vorticity, and
vertical motion are shown in Figure 2 as they evolve in the
sea and land breeze cycle corresponding to Figure 1. Figure 2
indicates a distinct diurnal variability of the ensemble spread
both in space and intensity. Both buoyancy and vorticity
exhibit spread that is mostly confined to the surface. For
buoyancy, this is primarily a result of the initial condition
spread projecting onto horizontally uniform perturbations,
which can only weaken slowly through vertical diffusion.
Vorticity spread is also influenced by heating through the @b0/
@x term in equation (4) yet has a more localized response with
most of the signal concentrated around the frontal boundary.
Thus, while the vorticity spread is large near the sea and land
breeze fronts, the vertically propagating diurnal gravity
waves appear to have very weak signal in the vorticity spread.
While the deterministic part of the forcing projects exclu-
sively onto the diurnal frequency, the stochastic part of the
forcing projects equally onto all frequencies. Thus, while
waves excited by the forcing follow a single ray path pair in
the linear limit [Rotunno, 1983], waves excited by the
stochastic forcing exhibit no such preference. Furthermore,
most of the diurnal gravity wave spread associated with initial
condition uncertainty of vorticity (not shown) will have
propagated out of the domain during the three days before
the displayed times.
[28] The spatial distribution of the spread of vertical

motion is entirely attributable to the timing and location
of the frontal boundary. Additionally, the vertically propa-
gating frontal gravity waves (Figure 1) appear to have their
strongest signal in the ensemble spread of vertical motion.
This is mainly due to these waves’ projecting most of their
kinetic energy in the vertical direction as they propagate

away from the strong horizontal temperature gradient at the
surface.
[29] Corresponding to Figure 2, pointwise (i.e., computed

at the same grid point) covariance and correlation coeffi-
cient between buoyancy and vorticity are plotted at the
different phases of the sea breeze cycle (Figure 3). The
covariance structure (Figures 3a–3d) reflects the combined
response of buoyancy and vorticity spread and thus is
mostly concentrated at the surface and is triggered by the
frontal boundary. Meanwhile, a much more intricate struc-
ture of the correlation coefficient (Figures 3e–3h) is
exhibited throughout the sea breeze cycle. In the linear
limit [Rotunno, 1983], variations in the heating intensity
would lead to a dominantly negative (positive) correlation
structure between buoyancy and vorticity over the sea (land)
that is independent of the phase of the sea breeze circula-
tion. This simple structure predicted by the linear theory is
modified considerably by the nonlinearities in the model.
The global evolution of the buoyancy-vorticity correlation
structure during the 6th forecast day (Figures 3e–3h)
reflects the remnants of the initial-condition correlation
structure (not shown). Meanwhile, the local variations near
the front are caused by the vertical gravity waves that
emanate from the frontal boundary during the peak sea
breeze phase (Figures 3f–3h, over land). In contrast, during
the land breeze phase, the global structure of the initial-
condition correlation is only weakly modified by the pres-
ence of the front (Figures 3g–3h, over sea).
4.1.3. Error Dynamics
[30] The 10-day evolution of the ensemble spread (mea-

sured by the domain-averaged standard deviation of the
ensemble) shows that buoyancy (Figure 4a) and vorticity
(Figure 4c) both converge during the first 96 hours, follow-
ing an initial period of vorticity spread growth. After
96 hours, the buoyancy spread, which is nearly horizontally
uniform (Figures 2a–2d), exhibits little or no diurnal
variation while the vorticity spread, which is associated
primarily with fronts, reaches a diurnal maximum when the
sea breeze is strongest. A corresponding asymmetry be-
tween the buoyancy and vorticity spread is also apparent in
their response to initial phase error and stochastic heating
error (not shown).
[31] Because of its horizontally uniform structure, the

overall distribution of buoyancy spread remains virtually
unaltered by the diurnal sea breeze cycle (compare to
Figures 2a–2d). This is both because of the weak advective
tendency due to the horizontal uniformity of the buoyancy
spread and the weak vertical diffusion of buoyancy. By
similar reasoning, then, the localized structure of the vor-
ticity spread that is correlated to the location and intensity of
the sea breeze front (compare to Figures 2e–2h) is quickly
advected out of the domain through the propagation of the
front. Consequently, domain-averaged vorticity spread
exhibits a pronounced diurnal variability. In addition, be-
cause of the tendency to be advected out of the domain at the
timescales of frontal propagation, the memory of initial
vorticity spread is not retained within the system beyond
96 hours. Once initial spread information is ‘‘forgotten’’,
vorticity spread is then controlled by the stochastic heating.
During this period (96–240 hours in Figure 4c), vorticity
spread grows rapidly through the intensification of the sea
breeze front which, due to the stochastic heating, enhances
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location error (compare to Figure 2f) but does not decay
as quickly both because of the lingering sea breeze front
and the newly formed weaker land breeze front (compare
Figures 2f to 2h, the vorticity spread within both the old sea
breeze front and the newly formed land breeze front is about
half of its value of its peak phase). As a result, the spread
fluctuates diurnally about a mean value that linearly depends
on the standard deviation of stochastic heating amplitude
(not shown).
[32] To further investigate the spatial structure of error

and confirm our hypothesis about the differences between

buoyancy and vorticity spread, spectra of total power of the
difference buoyancy (Figure 4b) and difference vorticity
(Figure 4d) are plotted as a function of horizontal wave
number at the four different phases of the sea breeze cycle,
where differences are determined from the mean for each
ensemble member and then the spectra are summed across
ensemble members and vertical levels. In order to minimize
aliasing due to the ‘‘half-wavelength structure’’ of buoyancy
(i.e. the common case of alternating values from one half of
the domain to the other), its power spectra are computed
after patching the entire forecast domain horizontally. This

Figure 2. Evolution of the sea and land breeze cycles as observed through the distribution of the
standard deviation of buoyancy (left panels, ms�2), vorticity (middle panels, s�1), and vertical motion
(right panels, ms�1) within the forecast domain at forecast times same as in Figure 1. Contour intervals
are 0.001 ms�2 (Figures 2a–2d), 5 
 10�4 s�1 (Figures 2e–2h), 6 
 10�4 ms�1 (Figures 2i, 2k, and 2l),
and 1.6 
 10�3 ms�1 (Figure 2j).
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gives rise to wave number ‘‘1/2’’ on buoyancy power
spectra plots. The large-scale structure of spread is evident
for both variables. Yet, as conjectured in the previous
paragraph, while both variables lose power selectively at
larger scales as the experiment proceeds into the sixth day,

buoyancy remains to be dominated by wave numbers 0 and
1/2, which is an indication of retained memory of initial
conditions. Vorticity power, on the other hand, appears to
have become almost ‘‘white’’ between wave numbers 0–10
and exhibits a much ‘‘flatter’’ spectrum compared to buoy-

Figure 3. Distribution of pointwise covariance (left panels, ms�3) and pointwise correlation coefficient
(right panels) between buoyancy and vorticity at forecast times same as in Figure 1. Solid (dashed)
contours indicate positive (negative) values. Contour intervals are 5 
 10�6 ms�3 (Figures 3a–3d) and
0.2 (Figures 3e–3h).
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ancy. This confirms our hypothesis that, compared to buoy-
ancy, initial conditions have a much smaller impact on the
later evolution of the vorticity spread.
[33] Active frontal dynamics in the sea breeze change the

power spectra considerably and introduce smaller-scale
structure to both variables. While the power of buoyancy
spread increases by about 3 orders of magnitude at wave
number 30, the overall spectrum remains ‘‘red’’ with power
in wave numbers 0 and 1/2 still larger by about 5 and 3
orders of magnitude, respectively. Consequently, domain-
averaged buoyancy spread exhibits no noticeable diurnal
signal at later stages of the experiment. On the other hand,
the vorticity spread reveals a much more pronounced
influence of smaller scales at the peak sea breeze phase so
that the power at smaller scales becomes almost comparable
in magnitude to the power at larger scales. The relatively
large power at smaller scales projects into rapid error
growth and results in the distinct diurnal signal in the
vorticity spread. Despite this considerable contribution of
error at smaller scales during the peak sea breeze phase, the
system appears to lack a mechanism to grow smaller-scale
errors into larger scales. As a result, beyond day-to-day
variability, overall level of error remains relatively stable

(i.e., error saturation), not showing signs of long-term
growth.

4.2. Filter Performance

[34] Filter evaluation is carried out using the sequential
square-root EnKF as explained in section 2 and its basic
properties as described in section 3.2. In these tests, simu-
lated land-surface observations (thus spanning only half of
the domain at surface) of buoyancy were used with 40-km
horizontal spacing and an assumed observational error of
10�3 ms�2. Analyses are performed every 3 hours, begin-
ning with the 3-hour forecast. While the entire simulation
domain (including the sponge layers) are used to perform
analyses and simulate observations, statistics are computed
within the main (interior) domain. Thus, the dimension of
the state vector is 55000, while the number of observations
simulated for each analysis cycle is 13 and the ensemble
comprises 50 members. In the following sections, results are
presented through the investigation of error structure and
filter sensitivity.
4.2.1. Error Characteristics
[35] The evolution of root-mean square (RMS) error and

ensemble spread of prognostic variables buoyancy and

Figure 4. Upper panels: 240-hour evolution of domain-averaged standard deviation of buoyancy
(Figure 4a, ms�2) and vorticity (Figure 4c, s�1) from a pure forecast run. Lower panels: Domain-total
power spectra of the cumulative difference of each ensemble member and the ensemble mean for
buoyancy (Figure 4b, m2s�4) and vorticity (Figure 4d, s�2) at initial time and forecast times 123 hours
(onset of the sea breeze phase, solid), 129 hours (peak sea breeze phase, dashed), 135 hours (onset of the
land breeze phase, dashed-dotted), and 141 hours (peak land breeze phase, dotted). Wave number 1
corresponds to a wavelength of 500 km while wave number 31 approximately corresponds to the double
Nyquist wavelength of 16 km.
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vorticity from a 144-hour run is shown in Figure 5. During
the first analysis cycle, a large reduction in buoyancy error
occurs with a correction of about 83% (Figure 5a), while
vorticity error reduction is 42% (Figure 5c). Subsequent
error reduction between hour 3 and hour 144 analysis is
about 90% for both variables. In addition, buoyancy error
appears to grow considerably during the 3-hour forecast
runs between each analysis cycle although the error intro-
duced in that manner is immediately removed at the
following analysis step so that the overall error saturates
at a level that is comparable to the observation accuracy
(10�3 ms�2). Meanwhile, vorticity error growth between
analysis cycles has a diurnal nature with strongest error
growth occurring during the peak sea breeze phases. Even-
tually and similar to buoyancy, vorticity error settles to a
level that is both controlled by observational accuracy and
stochastic uncertainty. The error settling time for both
variables is about one day.
[36] To compare how error is reduced during an analysis

step, the domain-wide distribution of prior and posterior
RMS error of buoyancy and vorticity is shown in Figure 6 at
the first analysis step (3 hours) and two peak sea breeze
phases (9 and 129 hours). At 3-hour model time (Figures 6a–
6d), domain-wide error of both variables is removed consid-
erably in accordance with the large first-analysis error
reduction that is observed in Figure 5 (errors in the left

quarter of the domain are not reduced due to the constraint of
the radius of influence). Further investigation reveals that
most of the error removed is larger-scale error that is associ-
ated with the ensemble initialization (mostly phase differ-
ences between different times that were chosen as ensemble
members). Remaining errors are concentrated mostly around
the strong temperature gradients which are the focus of
nonlinear frontal dynamics.
[37] At 9 hours, which is the third analysis step and

coincides with the peak sea breeze phase, the forecast
RMS error (Figures 6e, 6g) of both variables exhibit
significant small-scale error growth compared to the 3-hour
analysis RMS error. For both variables, the strongest error is
located at the surface around the front with weaker error
extending vertically and showing a distinct gravity wave
structure. In addition, a much weaker buoyancy error is
found at the surface that extends uniformly over land which
is the result of the stochastic heating error. At this time,
small-scale errors due to active frontal dynamics dominate
over larger-scale errors due to stochastic heating, illustrating
that initial frontal errors are not immediately eradicated by
the first few analyses. On the other hand, the larger-scale
buoyancy error over land surface is completely removed.
[38] At 129 hours, which is the peak sea breeze phase of

the sixth day of the experiment, the distribution of forecast
RMS error of buoyancy (Figure 6i) shows a distinct large-

Figure 5. 144-hour evolution of EnKF buoyancy RMS error (Figure 5a, ms�2), buoyancy domain-
averaged standard deviation (Figure 5b, ms�2), vorticity RMS error (Figure 5c, s�1), and vorticity
domain-averaged standard deviation (Figure 5d, s�1) plotted in solid black. Analyses are performed at
3-hour forecast intervals. In each panel, respective metric from the pure forecast run is plotted in solid
gray for comparison.
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scale structure much similar to the forecast error distribution
at 3 hours (Figure 6a). Embedded in that structure, a small-
scale signal is also discernible at the sea breeze front
location which is strong in magnitude yet very localized
at the surface and weakly extends upward. Comparison of
this structure to the 9-hour distribution (Figure 6e) suggests
that repeated 3-hour analyses have removed most of the
remaining small-scale error caused by initial conditions, so
that forecast error is now predominantly generated through
the stochastic uncertainty of heating. In contrast to buoy-

ancy but consistent with Figure 2f, forecast RMS error of
vorticity appears to have retained its small-scale structure
(Figure 6k). As explained before, this is the result of
vorticity’s sensitivity to the location error of the front that
also enables the error to be advected out of the forecast
domain. Similar to previous times, the filter at this time
successfully removes most of the large-scale error of buoy-
ancy (Figure 6j), leaving some buoyancy error behind the
sea breeze. Similarly, considerable reduction also occurs in
vorticity error (Figure 6l) and most of the error within the

Figure 6. Domain distribution of prior (forecast) and posterior (analysis) RMS error of buoyancy
(ms�2) and vorticity (s�1) at 3 hours (first analysis, Figures 6a–6d), 9 hours (peak sea breeze phase of
day 1, Figures 6e–6h) and 129 hours (peak sea breeze phase of day 6, Figures 6i–6l) from the same
EnKF run as in Figure 5. Contour intervals are 0.003 ms�2 (Figures 6a and 6b), 0.001 s�1 (Figures 6c and
6d), 0.0015 ms�2 (Figures 6e and 6f), 5 
 10�4 s�1 (Figures 6g and 6h), 3.5 
 10�4 ms�2 (Figures 6i
and 6j), and 1 
 10�4 s�1 (Figures 6k and 6l).
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frontal and gravity-wave structure is eliminated. From this
visual analysis, surface buoyancy observations with 40 km
spacing, in addition to their information content at their
natural large-scale resolution, appear to contain valuable
information relevant at the scales of frontal convergence. As
a result, the filter not only effectively removes large-scale
errors due to stochastic heating but performs also well at
reducing small-scale error due to nonlinearities at the front.
[39] To further examine the scale-sensitive behavior of

the filter, power spectra of the two variables are plotted at 3,
9, and 129 hours (Figure 7). At the first analysis step of the
model (Figures 7a and 7d), both variables exhibit the
greatest error reduction at large scales primarily as a result
of the error content of initial conditions being predominantly
large-scale. At 9 hours, because of the fact that considerable
small-scale error still exists in the forecast domain (compare
to Figures 6b and 6h) that further intensifies during the active
sea breeze phase, power spectra of both variables exhibit
significantly larger energy at small scales compared to the
initial time (Figures 7b and 7e). This small-scale buoyancy
error growth naturally occurs faster than the large-scale error
growth normally induced by stochastic heating so that the
increase in the power at wave numbers 0, 1/2, and 1 is smaller
for the 9-hour forecast. Consequently, the larger-scale infor-
mation content of buoyancy observations at 9 hours contrib-
utes very little to the EnKF analysis and thus reduction in
large-scale power is small (almost nonexistent for vorticity).
At 129 hours, as the small-scale error becomes saturated after
repeated 3-hourly analyses, stochastic heating uncertainty
becomes dominant and generates large-scale buoyancy error
which is then more effectively removed by the filter
(Figure 7c). On the other hand, vorticity error still
continues to be mainly concentrated at the front and

retains its small-scale structure. As a result, reduction in
power occurs mostly at smaller scales (Figure 7f) and its
magnitude becomes comparable to that of the large-scale
reduction at the 3-hour assimilation (Figure 7d). This
confirms our hypothesis that surface buoyancy observa-
tions with 40-km spacing contain sufficient small-scale
information so that the filter performs well at reducing
especially the small-scale vorticity errors associated with
the nonlinear frontal processes.
4.2.2. Sensitivity to Observation Accuracy, Ensemble
Size, Analysis Frequency, Radius of Influence,
Observation Spacing, and Type of Observations
[40] Experiments are also carried out to investigate the

extent and nature of the sensitivity of the filter to various
filter-related parameters. The results are presented in the
form of comparative RMS error plots of the unobserved
variable vorticity (Figure 8). In these plots, comparison is
made between the parameter value in the control experi-
ment (discussed in detail in section 4.1) and two other
parameter values, one larger and one smaller than the
control parameter value. In general, vorticity error is found
to be sensitive to all parameters especially during the first
24 hours of the assimilation experiments. In all of the
cases, errors begin with a relatively large difference be-
tween the experiments and, except observation accuracy,
converge toward each other at later stages of the experi-
ments so that error differences become progressively
smaller. An interesting behavior is observed with the
sensitivity to observation accuracy: While more accurate
observations (10�4 ms�2, one order of magnitude smaller
than the control experiment) have almost no positive
impact on vorticity error, loss of observation accuracy
(10�2 ms�2) results in considerably larger error (a more

Figure 7. Domain-total power spectra of the cumulative difference of each ensemble member and the
ensemble mean for buoyancy (Figures 6a–6c, m2s�4) and vorticity (Figures 6d–6f, s�2) at forecast
(prior, solid lines) and analysis (posterior, dashed lines) steps of 3 hours, 9 hours, and 129 hours.
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proportional response to observation accuracy is exhibited
by buoyancy error which is not shown here).
[41] Finally, one common behavior is believed to be

linked to the large-scale nature of buoyancy. Parameters
that exhibit similar characteristics in this respect are
observation spacing (Figure 8e) and assimilation of an
additional buoyancy sounding observation located about
90 km inland from the coast (Figure 8f). In both cases,
vorticity error is not particularly sensitive to the variations
in the chosen parameter. Apparently, the scale dependence
of the information content of buoyancy observations
remains mostly unchanged so that the smaller-scale fea-
tures of the flow are not sampled more effectively by

either an additional sounding or a reduction of observation
spacing to 20 km.

5. Summary and Conclusions

[42] This article documents the effectiveness of the
ensemble Kalman filter for a thermally forced nonlinear
two-dimensional sea breeze model with forcing that is
maintained through an explicit spatially and diurnally
varied heating function with an added stochastic compo-
nent. Pure forecast experiments reveal that the model
exhibits moderate levels of overall nonlinearity. Ensemble
spread of both buoyancy and vorticity is found to remain

Figure 8. Sensitivity of RMS error (s�1) of the unobserved variable vorticity to (a) observation
accuracy, (b) ensemble size, (c) analysis frequency, (d) radius of influence, (e) observation spacing, and
(e) assimilation of a single additional sounding.
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stabilized (error saturation) at a certain level and does not
show signs of large-scale growth over a 10-day period.
Strongest nonlinearity coincides with the peak sea breeze
phase of the circulation in timing and with the sea breeze
front spatially. Considerable small-scale error growth
occurs at this phase, which is most pronounced in the
vorticity field. Nevertheless, at other phases of the sea
breeze, the model tends to diffuse and advect vorticity
errors out of the domain and lacks a mechanism to translate
small-scale errors produced during the peak sea breeze
phase into larger-scale errors at later times. As a result, the
overall vorticity error appears stabilized and fluctuates in a
diurnal manner with distinct day-to-day variability. How-
ever, buoyancy retains its memory of large-scale initial-
condition error for a much longer duration because of its
horizontally uniform distribution and weaker diffusion.
This results in a dominantly large-scale error structure for
buoyancy so that it exhibits no diurnal variability. EnKF
control experiments are performed with simulated surface
buoyancy observations on land that are placed 40 km apart
and sequentially assimilated at 3-hour intervals. At the first
analysis step, the filter is observed to successfully remove
most of the large-scale phase-difference errors resulting
from the initial conditions. At this step, domain-averaged
error for buoyancy and vorticity is reduced by about 83%
and 42%, respectively. Subsequent analyses continue to
remove error at an increasingly slower rate and error
ultimately saturates within about 24 hours at a level that
is proportional to observation accuracy.
[43] Surface buoyancy observations with 40-km spacing

are found to selectively resolve the large-scale features of
the buoyancy field. As a result, the filter performs much
better at larger scales for buoyancy. This becomes especially
important at later stages of an assimilation experiment when
most of the large-scale initial-condition error is already
removed from the forecast domain. Stochastic heating then
consistently results in large-scale errors in buoyancy which
are then effectively removed by the filter at each analysis
step. Meanwhile, small-scale vorticity errors are mostly
induced by nonlinear processes near the front during the
peak sea breeze phase. As a result, even though error growth
of vorticity becomes more pronounced during the peak sea
breeze phases, long-term vorticity error remains small
because growth only occurs for a limited duration during
the diurnal cycle. Moreover, the filter is observed to perform
well in reducing the small-scale vorticity error during such
active phases. We believe that 40-km surface buoyancy
observations, in addition to their natural large-scale infor-
mation content consistent with their spacing, contain suffi-
cient small-scale information so that the filter is effective at
both removing large-scale errors due to the stochastic
heating and small-scale errors due to the nonlinearities of
the sea breeze front.
[44] Sensitivity experiments demonstrate that the RMS

error of the unobserved variable vorticity is most sensitive
to observation accuracy, ensemble size, analysis frequency,
and radius of influence. On the other hand, vorticity error
reduction by the filter is not sensitive to decreased obser-
vation spacing to 20 km or the assimilation of an additional
single sounding. Apparently, the scale dependence of the
information content of buoyancy observations does not
change so that the additional sounding or the reduction of

observation spacing do not contribute significantly to the
better sampling of the smaller-scale structure of vorticity.
[45] There are a number of limitations of the model worth

mentioning briefly, as we believe that they are relevant in
terms of sea breeze dynamics and the application of the
EnKF. Dynamical simplifications were made to achieve
computational efficiency: The Coriolis force is omitted
because it does not have a direct impact on the nonlinearity
of the sea breeze circulation; the hydrostatic assumption
enables vorticity to be independent of the horizontal dis-
tance so that the inversion algorithm (between vorticity and
stream function) becomes much simpler to implement; and
the assumption of dry dynamics eliminates one entire
equation and allows the model to be integrated forward
much more efficiently. Such simplifications undoubtedly
make our sea breeze model less realistic yet more accom-
modating in terms of understanding and controlling other-
wise complicated interactions among model and filter
components. Last, an important limitation is related to our
choice of representing thermal forcing through an explicit
heating function rather than a flux-based scheme that
implicitly resolves heating.
[46] We believe that the current model setup offers a

sufficient level of simplicity to allow for the preliminary
investigation of a novel application of the EnKF to forced-
dissipative systems, while retaining most of the key
characteristics of sea breeze dynamics such as the inertia-
gravity-wave structure and the nonlinear sea breeze front. A
major future goal is to apply our improved understanding of
the interactions between the forced nature of the sea breeze
circulation and the EnKF to an imperfect-model setting.
This will allow us to perform simultaneous estimation of
the state and the parameters of the model as well as to
investigate model error characteristics that arise from
parameter uncertainty. Another interesting approach is to
estimate source/distribution properties of a scalar tracer
through the integration of a chemical concentration model
which would facilitate the investigation of connections
between the sea breeze circulation and the transport of
certain inert chemicals. Both of these studies are already
underway and the results will be reported elsewhere in
near future.
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