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[11 The performance of the ensemble Kalman filter
(EnKF) under imperfect model conditions is investigated
through simultaneous state and parameter estimation for a
numerical weather prediction model of operational
complexity (MMS5). The source of model error is assumed
to be the uncertainty in the vertical eddy mixing coefficient.
Assimilations are performed with a 12-hour interval with
simulated sounding and surface observations of horizontal
winds and temperature. The mean estimated parameter
value nicely converges to the true value within a satisfactory
level of variability due to sufficient model sensitivity to
parameter uncertainty and detectable (relative to ensemble
sampling noise) correlation signal between the parameter
and observed variables. Citation: Aksoy, A., F. Zhang, and
J. W. Nielsen-Gammon (2006), Ensemble-based simultaneous
state and parameter estimation with MMS5, Geophys. Res. Lett.,
33, L12801, doi:10.1029/2006GL026186.

1. Introduction

[2] In recent years, especially in the atmospheric science
community, the ensemble Kalman filter (EnKF) has drawn
considerable research attention as an alternative data assim-
ilation technique to the operationally-established four-
dimensional variational (4DVAR) method which is currently
being operated by the European Centre for Medium-Range
Weather Forecasts [Rabier et al., 2000] and Météo-France
[Gauthier and Thépaut, 2001]. The EnKF, first proposed in
the geophysical literature by Evensen [1994], has today
reached near-operational status at the Canadian Meteorolog-
ical Centre for large-scale applications [Houtekamer et al.,
2005]. At meso- and smaller scales, the feasibility of the
method has been investigated by a number of studies [e.g.,
Aksoy et al., 2005; Zhang et al., 2006; Tong and Xue, 2005;
Dowell et al., 2004; Snyder and Zhang, 2003]. A fairly
complete overview of the theory and practical applications of
the EnKF are given by Evensen [2003], while Lorenc [2004]
presents a comparison study between the EnKF and 4DVAR
techniques.

[3] The application of ensemble-based simultaneous state
and parameter estimation is a very new area of investigation
in atmospheric sciences. For numerical weather prediction
(NWP) purposes, studies by Aksoy et al. [2006] (hereinafter
referred to as AZN), Hacker and Snyder [2005], and
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Anderson [2001] have laid the groundwork for the appli-
cation of the EnKF to relatively low-order models. Their
results are very promising. Successful implementation
has also been carried out for steady-state climatological
modeling purposes [e.g., Annan et al., 2005a, 2005b]. The
current study explores the application of the concept to
numerical modeling environments of operational complex-
ity. To our knowledge, this is the first such application of its
kind and we hope that it will encourage further investiga-
tion by the numerical modeling and data assimilation
community.

2. Model and Filter Setup

[4] In this study, the Penn State-NCAR fifth-generation
nonhydrostatic mesoscale model MMS5 [Dudhia, 1993] is
used to represent the numerical and implementation com-
plexities associated with an operational forecasting system.
The horizontal model domain has 55 x 55 grid points with
36 km spacing, while there are 43 vertical layers. Employed
parameterization schemes are the Medium Range Forecast
model (MRF) planetary boundary layer (PBL) scheme, the
Grell cumulus scheme with the shallow cumulus option,
and the simple ice microphysical scheme. The model
prognostic variables include the Cartesian velocity compo-
nents (i, v, w), pressure perturbation (p’), temperature (7),
and mixing ratio for water vapor (g) and several other
hydrometeor species.

[5s] As the dynamical focus of our previous work was on
the thermally-forced sea breeze circulation [AZN], the
model domain in the current study is chosen such that it
covers mostly the Southcentral United Stated and the
northern half of Gulf of Mexico where such local circu-
lations are very prominent during summer months. Prelim-
inary simulations showed that the sea breeze was sensitive
to the vertical mixing parameterization, so observations
should contain considerable information regarding vertical
mixing. Parameter estimation computations for this study
are based on the eddy mixing coefficient (K,) for the MRF
PBL scheme [Hong and Pan, 1996]. In order to represent a
global uncertainty in this scheme, it is modified such that
the final K, value determined within the scheme is multi-
plied by a user-defined multiplier, m,, before the implicit
vertical diffusion computation is performed. Thus, for m. =
1.0, the original MRF PBL computation is simply repeated.
The resulting variability in m,. imposes a global influence on
vertical diffusion. By implementing a global multiplier to
K., we merely attempt to account for the uncertainties of the
many empirical global parameters within the MRF PBL
scheme in a cumulative fashion (K. itself is spatially and
temporally variable).
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Figure 1. Perfect-model forecast distributions of horizon-
tal wind (full barbs 5ms™"), temperature (contours of 1.0°C
interval), and water vapor mixing ratio (shading with
4gkg ™" interval) at forecast times (a) 24 hours, (b) 30 hours,
(c) 36 hours, and (d) 42 hours at height 0.5 km.

[6] In general, the characteristics of the EnKF are very
similar to the filter used in AZN. The ensemble has 40
members and is “‘climatologically initialized” [see AZN]
using the 40-km NCEP/GCIP analysis for the period
1 June—15 September 2000. Sounding and surface obser-
vations of u, v, and T with 324- and 72-km horizontal
spacing, respectively, are simulated from a truth simulation
(observational errors of 1ms™' for u, v and 0.5 K for 7).
Observations are assimilated every 12 hours and covariance
localization using a compactly supported fifth-order corre-
lation function [Gaspari and Cohn, 1999] is carried out
with a radius of influence of 30 grid points both horizontally
and vertically. Finally, at each analysis step, posterior state
covariances are “relaxed” to the prior with a ratio of 0.5 as
given by Zhang et al. [2004], thus forcing the uncertainty in
the analysis to be inflated.

3. Spatial Updating of a Global Model Parameter

[7] With the significantly larger number of observations
(~10%) in this study compared to AZN, contamination of the
posterior estimate of m. by the accumulation of sampling
error during the update process becomes an issue. To tackle
this problem, a new method, called “spatial updating”, is
devised that transforms the prior m. from a scalar to a
homogeneous two-dimensional surface array. The updating
of the parameter is performed spatially using localization,
yielding a spatially-varied posterior distribution. Then,
spatial averaging is performed for each ensemble member
to obtain the global m. estimate which is fed into the
subsequent forecast cycle. The localization properties
employed are the same as for the state variables. In addition,
to prevent filter divergence due to parameter variance
narrowing, the “conditional covariance inflation” technique
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of AZN is applied with a variance limit set at 1/4 of the
initial parameter error.

4. Pure-Forecast Behavior

[8] The 72-hour control ensemble forecast is initialized at
00Z 28 August 2000 (7pm CST which is nearly the peak sea
breeze phase) with perfect-model statistics (i.e., the initial
true state is taken as one of the ensemble members). With
the chosen domain size and resolution, the diurnal signal
within the PBL arises both from the sea breeze circulation
and the Great Plains low level jet. To illustrate the diurnal
signal embedded in the large-scale flow, the horizontal
distributions of mean u, v, 7, and g are plotted for 24-,
30-, 36-, and 42-hour forecast times at 0.5-km height above
surface (Figure 1). A persistent anticyclonic circulation
centered near Louisiana is evident at all forecast times.
Nevertheless, the impacts of the diurnal circulation are
discernible especially across the coastline between East
Texas to Louisiana. Specifically, notice the penetration of
the temperature and moisture gradients inland from 24 hours
(peak sea breeze phase) to 36 hours, the veering of winds to
the right during the 24-hour cycle, and the establishment of
the northerly return flow due to the land breeze between
36—42 hours.

[9] To analyze the overall strength of correlation between
observed variables and m,., a 72-hour forecast experiment is
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Figure 2. (a—d) Horizontal distribution of vertically-
averaged (Figures 2a and 2c¢) and surface (Figures 2b
and 2d) rms correlation between the parameter m. and the
observed variables T (Figures 2a and 2b) and u (Figure 2c and
2d) at the forecast time 24 hours. (e and f) 72-hour evolution
of vertically-averaged (solid) and surface (dashed) rms

correlation. Contour interval in the spatial distribution plots
is 0.05 for Figures 2a and 2c and 0.1 for Figures 2b and 2d.
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Figure 3. (a—c) The time evolution of estimated mean m,. (solid black) vs. true m, (solid gray) for initial values of 1.2
(Figure 3a), 1.65 (Figure 3b), and 0.7 (Figure 3c). The shaded area represents the 1 —o limits of m, spread. (d—1i) The time
evolution of RM_DTE (Figures 3d—3f) and rms error of g (Figures 3g—3i) for initial m, values of 1.2 (Figures 3d and 3g),
1.65 (Figures 3e and 3h), and 0.7 (Figures 3f and 3i). Respective quantities from respective no-estimation (perfect-

parameter) experiments are shown with dashed (dotted) lines.

carried out with m, perturbed about the value 1.0 with a
standard deviation of 0.3 and the behavior of the root-mean
square (rms) correlation (7) of m. with prognostic variables
is analyzed as in AZN. The spatial plot of 7 (computed at the
surface and averaged vertically) with 7'and u at the 24-hour
forecast time (Figures 2a—2d) reveals a horizontally- and
vertically-varied distribution which is an indication that
model dynamics contributes to the evolution of the
correlation between the observed variables and m,.. From
the 72-hour evolution of the vertically-averaged and surface
7 (Figures 2e—2f), it can be seen that vertically-averaged 7
values consistently stay between 0.2—0.3, which, according
to previous findings of AZN, appear to be sufficient for
parameter identifiability.

5. Parameter Estimation Results

[10] Three 72-hour estimation experiments are carried out
with mean initial m, values of 1.2, 1.65, and 0.7 vs. a true
value of 1.0. The time evolution of the estimated mean m,,
along with the true value and the one-standard-deviation
(1—o0) spread limits, are shown in Figures 3a—3c. In all
3 experiments, we see that the estimated m, value consis-

tently converges to the truth, remaining inside or very close
to the 1—o limits most of the time, meeting our basic
criterion for estimation performance [AZN]. We should also
note that the spatial variability in the estimated values of m,.
remain within 50% of the initial parameter spread and thus
mostly realistic (not shown).

[11] To analyze the impacts of parameter estimation on
the state analysis, the time evolution of root-mean difference
total energy (RM_DTE) and g rms error within the PBL
(surface to 850 hPa) are plotted in Figure 3d—3i [where
DTE = (' +V + kT'), primes denote differences between
any two simulations, k = C,/T,, C,, = 1004.7 Jkg_lK_l, and
7, =270 K]. For comparison, results from the respective no-
estimation (same respective initial m, error but no estima-
tion of m,) and perfect-parameter (no m,. error and only state
estimation) benchmarks are also plotted. We see that in all
3 experiments, the evolution of the error is stable while the
overall error is lower compared to the no-estimation bench-
mark. The improvement in error becomes distinctly more
pronounced for the largest initial m,. error of 0.65. For this
case, the overall level of error is ~14% lower than the no-
estimation benchmark and is almost indistinguishable from
the perfect-parameter benchmark. Meanwhile, the average
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error reduction at analysis steps is also better by ~9%.
These metrics are similar but somewhat less impressive
when computed over the entire domain depth (not shown).
This is not surprising as variations in m,. mainly influence
the PBL.

[12] A possible explanation for the observed difference of
behavior between the smaller and larger initial parameter
errors is linked to the interaction between uncertainties
associated with initial conditions and model error. In the
specific configuration adopted here, it appears that the
initial-state uncertainty may span a sufficiently high-dimen-
sional phase space to also account for the limited model
error uncertainty generated through the initial perturbation
of the parameter ..

[13] The existence of a level of parameter uncertainty to
which error growth is not very responsive also suggests that
such behavior can possibly be utilized to “calibrate” for the
acceptable level of parameter variability. For m,., the initial
spread of ~0.2—0.3 appears not to significantly contribute
to the forecast error and hence is within the acceptable level,
although a more complete analysis of the associated uncer-
tainty space is necessary.

6. Conclusions

[14] This article explores the use of an EnKF for simul-
taneous state and parameter estimation with a numerical
model of operational complexity (MMS5) in an otherwise
perfect-model framework. The uncertain model parameter is
the multiplier of the eddy mixing coefficient in the MRF
PBL scheme. Our satisfactory retrieval of the true parameter
value is significant from several points of view. First and
foremost, it shows that a sufficiently strong flow-dependent
covariance structure is present between observed variables
and the estimated parameter, suggesting the prospect of
treatment of model error for operational data assimilation
through ensemble-based parameter estimation. The ability
to retrieve parameter values is also valuable for the testing
and validation of the many model parameters, values of
which are normally obtained empirically or by trial-and-
error. Improvement of numerical models, in this respect, has
a direct consequence for deterministic weather forecasting
where it is not possible to account for model uncertainties
through the probabilistic ensemble approach.

[15] The introduced “spatial updating” of global param-
eters is observed to contribute substantially to the perfor-
mance of the estimation process. 4ZN argued that a unified
“meta-localization” approach for the simultaneous state and
parameter estimation might prove necessary for complex
numerical models. We believe that our method of spatial
updating, although ad hoc in nature, is one step forward
toward this goal, primarily because the spatial information
content of observations and the advantages of localization
are now being realized. However, the theoretical implica-
tions of this procedure on the correlation space itself and if
and how convergence properties can be improved are not
addressed in this study.

[16] Finally, because of the complexities of the problem
on hand, this study has been limited in scope to the
estimation of a global scalar parameter. Important consid-
erations such as temporal and spatial variability of param-
eters have necessarily been left as open scientific questions.
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We nevertheless believe that our conditional covariance
inflation and spatial updating techniques will be well suited
for such more generalized estimation problems.
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