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Abstract Using Arctic sea ice concentration derived from passive microwave satellite observations in
autumn and early winter over the 1979–2014 period, the Arctic region was objectively classified into several
smaller regions based on the interannual sea ice variability through self-organizing map analyses. The trend
in regional sea ice extent (RSIE) in each region was removed using an adaptive, nonlinear, and nonstationary
method called Ensemble Empirical Mode Decomposition, which captures well the accelerating decline of
Arctic RSIEs in recent decades. Although the linear trend in RSIE is negative in all regions in both seasons,
there are marked differences in RSIE trends and variability between regions, with the largest negative trends
found during autumn in the Beaufort Sea, the Barents-Kara Seas, and the Laptev-East Siberian Seas. Winter
weather patterns associated with the nonlinearly detrended RSIEs show distinct features for different
regions and tend to be better correlated with the autumn than early winter RSIE anomalies. Sea ice losses
in the Beaufort Sea and the Barents-Kara Seas are both associated with a cooling of Eurasia, but in the
former case the circulation anomaly is reminiscent of a Rossby wave train, whereas in the latter case the
pattern projects onto the negative phase of the Arctic Oscillation. These results highlight the nonuniform
changes in Arctic sea ice and suggest that regional sea ice variations may play a crucial role for the winter
weather patterns.

1. Introduction

The sea ice in the Arctic has decreased drastically in recent decades [Simmonds, 2015], and there are indica-
tions that the decline is accelerating [Comiso et al., 2008; Stroeve et al., 2012a]. Arctic sea ice is sensitive to
changes in the global climate system, partly owing to the many positive feedback mechanisms in the Arctic
region; thus, variations in sea ice can be a critical indicator of climate change. Moreover, sea ice is a key
player for the local Arctic climate system due to its influence on the surface albedo, heat, and moisture fluxes
between the atmosphere and ocean, surface roughness, and ocean circulation [Budikova, 2009]. Decreased
sea ice cover has been shown to play a leading role in Arctic amplification [Screen and Simmonds, 2010; Walsh,
2014], i.e., a larger warming trend observed in the Arctic region compared with lower latitudes.

There has been an increasing scientific interest in the variability and trends of Arctic sea ice cover due to its
potential impact on midlatitude weather and climate. A growing number of studies have found links between
decreased sea ice and anomalous weather patterns in the midlatitudes [see, e.g., Cohen et al., 2014; Vihma,
2014]. Francis and Vavrus [2012] proposed that reduced sea ice and Arctic amplification lead to a reduction of
the meridional geopotential height gradient, slower propagation of Rossby waves in the upper atmosphere,
and increased amplitude of planetary waves, with possible consequences for the midlatitudes including
slower moving weather systems and therefore more frequent extreme weather events. However, these pro-
posed impacts of Arctic sea ice loss do not show up clearly in the short observational records and are sensitive
to the methodology used to identify changes in weather and climate variability [Barnes, 2013]. Model simula-
tions have so far produced relatively weak responses in midlatitude weather to decreased Arctic sea ice. The
atmospheric signals are typically much smaller than the intrinsic variability of the atmosphere [e.g., Alexander
et al., 2004; Screen et al., 2013]. Whereas the warming in the Arctic scales roughly linearly with the sea
ice decline [Chen et al., 2016], the simulated midlatitude atmospheric response exhibits large nonlinearity
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[Petoukhov and Semenov, 2010; Semenov and Latif , 2015] and is not robust to linear changes in Arctic sea ice
cover [Chen et al., 2016].

Recent studies have found that the spatial pattern of sea ice variability may play an important role in deter-
mining whether, and how, Arctic sea ice anomalies impact midlatitude weather and climate. Peings and
Magnusdottir [2014] used an atmospheric model to show that the midlatitude atmospheric response to sea ice
loss is related to upward propagation of planetary waves. In their model simulations, a larger sea ice decrease
did not necessarily translate to a larger midlatitude response, which could be partially explained by how the
upward propagating waves interfered with the climatological background waves. One region that appears to
be favorable for positive interference and therefore increased transfer of momentum into the stratosphere is
the Barents Sea [Kim et al., 2014]. Pedersen et al. [2015] modeled the atmospheric response to different regional
changes in Arctic sea ice cover and found that the midlatitude response is sensitive to where the sea ice
anomalies are located. In particular, the position of the northern center of the North Atlantic Oscillation
pattern was found to be sensitive to the location of the sea ice reductions. Koenigk et al. [2016] investigated the
seasonal prediction skill of winter climate conditions in the northern midlatitude and high latitude, using sea
ice area in different Arctic subregions as predictors. They found that November sea ice variations in the Barents
and Greenland Seas play an important role for the sign of the wintertime North Atlantic Oscillation, whereas
the amplitude and spatial extent of the teleconnection pattern can be modulated by sea ice variations in the
Labrador Sea.

Despite the potential importance of regional sea ice changes, the most common metric to quantify Arctic sea
ice variability and trend is the total Arctic sea ice extent (SIE). (SIE is defined as the area of grid boxes covered
by at least 15% sea ice in a specified region.) The total Arctic SIE may, however, fail to capture many important
aspects of Arctic sea ice variability; for example, transport of sea ice from one region to another could cause
important regional anomalies with no change in the total sea ice cover. Some studies have investigated the sea
ice variability and trends in specific regions [e.g., Cavalieri and Parkinson, 2012], but these regions are usually
defined based on geography rather than the dynamic and thermodynamic characteristics of sea ice, so these
regional sea ice quantifications may also fail to capture the most important features of the system.

Another common issue with the quantification of sea ice changes is how to define the long-term trend.
Observational studies that investigate relations between variables often detrend time series prior to analysis
to avoid spurious correlations due to a common trend. The most frequently used method to identify trends is
linear fitting to time series. However, the accelerating decline of Arctic sea ice makes a linear trend a poor fit,
especially in the most recent years, when the linear trend would severely underestimate the rapid decline in
SIE. For this reason some studies employ a polynomial fitting instead [e.g., Tang et al., 2013], but this method
has no physical basis and is strongly dependent on a priori assumptions about the shape of the time series.
Furthermore, such trends are likely to be sensitive to the addition of new data points.

In this study we ask (1) which regions in the Arctic exhibit similar interannual variability in sea ice concentra-
tion (SIC; a measure of the area fraction covered by sea ice in a grid box), (2) what are the characteristics of
regional sea ice extent (RSIE) changes in these regions and how are they related to each other, and (3) are the
RSIEs variations associated with different winter weather patterns than the total Arctic SIE variations? We used
SIC data obtained from satellite passive microwave observations over the 1979–2014 period to classify the
Arctic sea ice cover into different subregions in autumn and early winter. Grid points with similar interannual
SIC variability were objectively classified as one sea ice region using an artificial neural network technique
called self-organizing map (SOM). This kind of classification is similar to other climate classifications such as
the well-known Köppen climate classification, which has proven useful and successful for quantifying climate
variability and change [e.g., Chan and Wu, 2015; Chen and Chen, 2013]. To detrend the time series, we used an
adaptive technique known as Ensemble Empirical Mode Decomposition (EEMD). The EEMD method makes
no a priori assumptions about the shape of the data and works well with nonlinear and nonstationary time
series, allowing fits to the nonlinear trends in Arctic sea ice while avoiding the strong sensitivity of, e.g., poly-
nomial fits. Based on the sea ice region classification, we assessed the regional variability and trends in RSIEs
and quantified the correlation of interannual RSIE variability between different regions and seasons. Finally,
to address the last question about how the RSIE variations are associated with winter weather patterns, we
linearly regressed 2 m temperature and sea level pressure (SLP) onto the detrended autumn and early winter
RSIEs in different regions and compared the regression patterns to the regressions onto the total Arctic SIE
anomalies. In conjunction with previous studies that have found evidence that a reduction in the total summer
Arctic SIE may affect the atmosphere well into the winter season [e.g., Francis et al., 2009], our regression

CHEN ET AL. REGIONAL ARCTIC SEA ICE VARIABILITY 14,434



Journal of Geophysical Research: Atmospheres 10.1002/2016JD024769

analysis using regional Arctic sea ice anomalies can shed some light on the importance of spatial variations
in the Arctic sea ice cover for the northern midlatitude and high-latitude winter weather conditions.

2. Methods
2.1. Sea Ice and Atmospheric Data
This study used SICs derived from passive microwave data from Nimbus-7 Scanning Multichannel Microwave
Radiometer (SMMR), the Defense Meteorological Satellite Program (DMSP) F8, F11, and F13 Special Sensor
Microwave Imagers (SSM/Is), and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS). The SIC
data set (V1.1), which was obtained from the National Snow and Ice Data Center, has been processed to pro-
vide consistent time series of SICs spanning the coverage of these different sensors [Cavalieri et al., 1996].
During transition periods when there is an overlap of data from two instruments, we chose to use the obser-
vations from the newer instrument. SMMR data were acquired every other day while SSM/I and SSMIS data are
available at a daily interval. All SIC observations were provided on a polar stereographic grid with a nominal
horizontal resolution of 25 km.

We focus on the Arctic sea ice variability in autumn, September–October, when the anomalies are largest,
and in early winter, November–December, when the remaining anomalies may have a greater effect on the
winter weather patterns, over the period 1979–2014 when satellite observations are available. Note that we
do not restrict attention to the area north of the Arctic Circle; for completeness, we include the whole region
defined by the SSM/I polar stereographic grid for the Northern Hemisphere and refer to this as the Arctic
for convenience. Daily SICs were averaged over the September–October and November–December seasons,
and the subsequent detrending and classification analyses were performed on the 2 month averaged SICs.

The different instruments on board the satellites have different-sized circular sectors near the pole where data
are missing due to orbit inclination, also known as pole holes. To ensure that all grid points have a similar
number of SIC data points, we used the largest pole hole (i.e., the one from the SMMR sensor) for the whole
time period. Grid points that are completely ice free for more than 50% of the time over the whole time period
were ignored in the subsequent analyses.

Atmospheric fields were obtained from the ERA-Interim reanalysis [Dee et al., 2011]. We used monthly mean
2 m air temperature and SLP on a 1∘ × 1∘ latitude-longitude grid from 1979 to 2015.

2.2. Detrending Using Ensemble Empirical Mode Decomposition
For the purpose of this study, we define a trend as low-frequency variations that result in a linear tendency
over the whole time period. The trends in Arctic SICs and SIEs are, however, generally not adequately described
by straight lines due to the strongly nonlinear changes in Arctic sea ice cover [Eisenman, 2010; Comiso, 2011].
There is evidence that a majority of the rate of Arctic SIE decline is externally forced [Stroeve et al., 2012b], and
because of the thinning of sea ice and feedback mechanisms in the Arctic climate system, it is expected that
the externally forced response in Arctic sea ice cover will exhibit increasing nonlinearity [Stroeve et al., 2012a].
To account for this nonlinearity and nonstationarity, we chose to detrend the sea ice data using intrinsic mode
functions (IMFs) obtained from EEMD analyses [Wu and Huang, 2009].

Empirical Mode Decomposition (EMD), which is the basis of the EEMD technique, is an adaptive method to
decompose a signal into different modes of varying frequency, called IMFs [Huang et al., 1998; Huang and
Wu, 2008]. The original signal can be reconstructed by summing all IMFs. Unlike the more traditional Fourier
transform and Wavelet transform, EMD does not assume any a priori shape for the basis functions; thus, the
EMD method works well for nonstationary and nonlinear data. The IMFs are instead found empirically through
an iterative process that is described below.

The process to identify the IMFs through EMD is called sifting. In the first step, all extrema in the data are
identified. The upper and lower envelopes that enclose all data points are defined by connecting the maxima
and minima, respectively, with natural cubic spline lines. The mean of the two envelopes is then subtracted
from the data. This process is repeated until the residual satisfies the criteria for an IMF: first, the number
of extrema and the number of zero crossings can differ at most by one, i.e., the function should describe a
function oscillating around zero; second, the mean of the upper and lower envelopes (defined by the local
maxima and minima, respectively) must equal zero.

After finding the first IMF, which contains information about the highest frequency mode, the IMF is sub-
tracted from the original data and the sifting steps are repeated to find the next IMF. Note that while the IMFs
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tend to be ordered from higher to lower frequencies, the frequency of an IMF is not necessarily (and often not)
constant in time. This whole process is repeated until the data have been decomposed into an appropriate
number of IMFs.

EEMD is an extension of the EMD method that uses a Monte Carlo approach to obtain more robust results
[Wu and Huang, 2009]. Because the EMD method relies on the extrema, it can be very sensitive to noise in
the data. EEMD attempts to address this problem by deliberately adding white noise to the original sequence
and performing EMD on an ensemble of randomly perturbed sequences. The ensemble mean of the IMFs,
in which the noise ideally cancels out, is then treated as the true signal. EEMD has been shown to yield more
robust results in the presence of uncertainties in the original data. In our study we used an ensemble of 100
members for the EEMD analysis and added noise with an amplitude corresponding to 0.2 standard deviations
of the original data.

To detrend the SIC, SIE, and RSIE time series using EEMD, we iteratively subtracted the next lowest frequency
IMF from the data until there was no detectable significant linear trend (p ≥ 0.05). Typically, one or two IMFs
were needed to detrend the time series.

2.3. Classification of Sea Ice Regions
In this study we classified the Arctic sea ice cover in two seasons, autumn and early winter, for the
time period 1979–2014. The detrended seasonal average SIC time series for September–October and
November–December were used in the classification. We used the detrended SIC anomalies rather than the
actual SICs to focus on regions with similar interannual variability of SIC. A classification on the actual SICs
using our method would mostly highlight regions of large sea ice loss in recent decades.

The sea ice classifications were performed using an objective method called SOM [Kohonen, 1982]. A SOM is
a type of artificial neural network that is commonly used to reduce high-dimensional data into a few clusters.
The name refers to the fact that the SOM is trained through unsupervised learning (self-organizing) and that
it consists of a map of clusters, also called nodes or neurons, which are connected to each other through a
neighborhood function. It is common to arrange the nodes in a one- or two-dimensional lattice to create a
map that is easy to visualize, but in principle any arbitrary map structure can be used. Nodes that are located
closer to each other in the map are typically more similar, whereas nodes far apart tend to be dissimilar or of
opposite sign.

The SOM algorithm consists of two phases, training and mapping. During the training phase the map of nodes
is initialized (often using the first two principal eigenvectors of the input data) and trained using competitive
learning, either sequentially or, as was done in this study, through a batch algorithm. After the map has been
trained, data points can be mapped to the nodes by calculating the Euclidean distance between the input data
and each node in the map. The node with the closest distance is considered the winning node, also known as
the best matching unit, and is chosen to represent the data point. This mapping reduces the input data to a
smaller number of representative SOM nodes.

Each node in the map has the same dimensionality as the original data. The SOM method has been suc-
cessfully applied to answer other questions about sea ice in the past, including characterizing variability of
Antarctic sea ice [Reusch and Alley, 2007] and assessing the dependence of Arctic sea ice variability on syn-
optic systems [Mills and Walsh, 2014]. Although SOMs are usually applied to spatial fields in the geosciences
[e.g., Johnson et al., 2008], there is nothing that restricts the method to spatial data. Other applications of SOMs
include clustering genes in the medical field, speech recognition, image searching, land cover classification,
and many more [Mwasiagi, 2011]. We refer to Mwasiagi [2011] and Johnson et al. [2008] for more information
about the SOM method.

Here we want to find which Arctic regions exhibit similar interannual SIC variability, so for our SOM analyses
we used the detrended seasonal average SIC time series extracted from each grid point in the Arctic region
as our training data. As a result, the nodes in our SOM will look like time series with the same number of data
points as our original SIC data. After the training, we mapped the original detrended SIC time series to the
SOM to classify the grid points according to the closest matching SOM node, where each node represents a
sea ice region with a specific interannual SIC variability. To reduce the number of similar sea ice regions, we
merged regions that share more than 50% of their variance in detrended RSIE variability. The classification
was performed separately for September–October and November–December because of large differences
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in the interannual sea ice variability between the two seasons, resulting in a poor training of the SOM when
considered together.

The SOM analyses were carried out using rectangular lattices with 3 × 4 nodes for the autumn SICs and 2 × 3
nodes for the early winter SICs. The SOM sizes were determined based on the correlation between the SICs
and the best matching units. The correlation increases as the SOM size is increased, initially fast for smaller
SOM sizes, and then more slowly as the SOM size becomes larger. Our chosen SOM sizes correspond to the
points at which the second derivative of the correlation versus SOM size becomes negative, i.e., when the
rate of increase in correlation is decreased, which implies that the benefit from increasing the SOM size is not
worth the increased number of nodes.

2.4. Sea Ice Extent and Regression Analyses
To obtain the 2 month averaged Arctic SIE and RSIEs for the different sea ice regions in September–October
(autumn) and November–December (early winter), we first calculated the daily RSIEs from daily fields of non-
detrended SICs and then averaged the daily RSIEs over the 2 month seasons. This procedure avoids artificial
biases that can arise when calculating the RSIE using, e.g., monthly mean SICs. The RSIEs were then detrended
using the same nonlinear and nonstationary EEMD detrending algorithm that was used to detrend the SICs
in the SOM analyses.

We examined the atmospheric patterns in middle to late winter (January through March) that are associ-
ated with the autumn and early winter RSIE variability in the different sea ice regions by performing lagged
linear regressions of seasonal and monthly mean 2 m temperature and SLP anomalies on the detrended,
sign-reversed, and standardized RSIEs. The 2 m temperature and SLP anomalies were obtained by linearly
detrending the time series. (We also detrended the atmospheric fields using our nonlinear EEMD detrending
method but chose to present the results from the simpler linear detrending because of the negligible dif-
ferences in results between the two methods.) The signs of the standardized SIE and RSIE time series were
reversed to show the 2 m temperature and SLP anomalies associated with one negative standard deviation
of the SIEs and RSIEs.

3. Results
3.1. Classified Arctic Sea Ice Regions
The whole extended Arctic was classified in our study into several subregions based on the interannual SIC
variability in each grid point, using a SOM of 3× 4 nodes in autumn (September–October) and 2× 3 nodes in
early winter (November–December). Throughout the rest of the paper we will refer to these Arctic subregions
as sea ice regions or just regions for simplicity.

Figure 1 shows the 12 SOM nodes for the autumn season. The SOM nodes generally represent the variability
of the SIC time series within each cluster well, resulting in a meaningful clustering of the data. The average
correlations between the SICs and their corresponding closest SOM node (i.e., their best matching unit) in the
autumn SOM range from 0.36 to 0.65. (Note that the correlations between the SOM nodes and the median SIC
time series in each node are much stronger, typically above 0.7 and greater than 0.9 in four nodes.) There is one
exception to this medium to strong correlation, the node on the third row and second column, which is only
weakly correlated to the SICs (r=0.07). The reason for this weak average correlation is due to the fact that this
SOM node and the detrended SIC time series mapped to this node exhibit close to zero interannual variability;
thus, even if the Euclidean distances between the node and the time series are small, the correlations between
them are not necessarily high. The SOM node on the third row and second column does a good job capturing
the characteristics of the clustered time series, representing grid points with a distinctively small interannual
SIC variability. The average correlation between the SICs and corresponding best matching units for all nodes
in autumn is 0.43. In early winter the correlations between the SICs and best matching units generally range
from 0.31 to 0.60, again with a SOM node (W5) representing small interannual SIC variability that is weakly
correlated to the SICs (r=0.17), with an average correlation of 0.37 across all nodes.

Three adjacent SOM nodes in autumn representing the SIC variability in the Laptev-East Siberian Seas were
sufficiently similar (i.e., greater than 50% shared variance) that it proved convenient to merge them for
interpretations. Similarly, we combined two adjacent nodes representing the SIC variability in the Barents-Kara
Seas into one sea ice region. The total number of autumn sea ice regions was thereby reduced from the
12 SOM nodes to 9 merged sea ice regions. There were no such strong correlations between the six early
winter SOM nodes, so we ended up with six sea ice regions in early winter, one for each node.
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Figure 1. Map of the SOM nodes for the autumn (September–October) season and corresponding SIC time series. Black lines show the SOM nodes, colored
lines show the median of all SIC time series that belong to each node, and colored shadings show the range from the lower quartile to the upper quartile of
the classified SIC time series. The colors correspond to the color of the sea ice regions in Figure 2a. The numbers in the upper right corner of the nodes
indicate the average correlation between the node and the SIC time series that belong to that node.

The autumn and early winter sea ice regions are shown in Figure 2. As one might expect, we find that grid
points with similar SIC variability tend to be located geographically close to each other, forming larger and
often contiguous subregions within the Arctic region. For convenience of discussion we numbered the sea ice
regions, starting from the upper left nodes and going across and then down the SOM lattices, and prefixed the
numbers with the letter “A” for the autumn regions and “W” for the early winter regions. To ease the compari-
son of the autumn and early winter regions, we renumbered and recolored the early winter regions based on
the temporal RSIE correlation and geographical closeness to the autumn regions. Specifically, we reordered
the early winter regions to maximize the average correlation of detrended RSIEs between the autumn and
early winter regions that share the same color in Figure 2. We deliberately chose to not make the numbers
between the autumn and early winter regions match to emphasize that the autumn and early winter regions
are not identical. Although there is a general agreement between the regions in the two seasons in terms of
geographical location and RSIE variability, there are also regions in early winter that do not correspond well
to any autumn regions.

In autumn (Figure 2a) we identify four major sea ice regions, in the vicinity of the Beaufort Sea (A1), the
Laptev-East Siberian Seas (A4), the Greenland Sea (A7), and the Barents-Kara Seas (A9). These sea ice regions
correspond to the four corner nodes of the SOM lattice, i.e., the nodes in the SOM with most dissimilar SIC
variability. There are two regions of medium size, A3 located northward of the Laptev-East Siberian Seas and
the western Beaufort Sea, and A8 to the north and west of the Queen Elizabeth Islands and along the coasts
of the continents. Finally, we find three smaller and more discontinuous regions close to the Canadian Arctic
Archipelago (A2, A5, and A6).
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Figure 2. Regions of similar interannual Arctic SIC variability in (a) autumn (September–October) and (b) early winter
(November–December), based on satellite data over 1979–2014. The two seasons were classified independently
through SOM analyses. The colors in Figure 2b were chosen to make it easier to compare the two maps, but note
that regions that share the same color between the two seasons do not necessarily correspond well to each other.

Figure 2b shows the corresponding classification for the Arctic SIC during early winter. This season has five
major sea ice regions, in the Laptev-East Siberian Seas (W1), the Beaufort Sea (W2), Hudson Bay extending up
to southern Baffin Bay (W3), the Greenland Sea, the northern Bering Sea and the Chukchi Sea (W4), and the
Barents-Kara Seas (W6). Grid points classified as W5 are mostly found around the Canadian Arctic Archipelago
and the Sea of Okhotsk. A summary of the geographical locations of the sea ice regions in autumn and early
winter can be found in Table 1.

We tested the robustness of our Arctic sea ice classifications by adding random white noise to the detrended
SIC time series at each grid point and then repeating the SOM training and mapping. With a noise amplitude
of 0.2 standard deviations of the original data, the classifications using the perturbed SICs produced similar
results to the classifications shown in Figure 2, with more than 94% of the grid points matching the original
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Table 1. Approximate Correspondence Between Sea Ice Regions and Geographical Locations

Sea Ice Region Geographical Locations

Autumn

A1 Beaufort Sea

A2 Along the Canadian Arctic Archipelago and north of the Beaufort Sea

A3 North of the East Siberian Sea and Chukchi Sea

A4 East Siberian Sea and Laptev Sea

A5 North of the Beaufort Sea

A6 Baffin Bay and along the coast of the Nunavut mainland

A7 Denmark Strait, Greenland Sea, Fram Strait, and north of the Beaufort Sea

A8 North of the Greenland and the Queen Elizabeth Islands, and along the coasts of the continents

A9 Barents Sea and Kara Sea

Early Winter

W1 East Siberian Sea and Laptev Sea

W2 Beaufort Sea, Denmark Strait, and Greenland Sea

W3 Baffin Bay, Davis Strait, Labrador Sea, and Hudson Bay

W4 Denmark Strait, Greenland Sea, Fram Strait, Chukchi Sea, and Bering Sea

W5 Sea of Okhotsk, Baffin Bay, and along the Canadian Arctic Archipelago

W6 Barents Sea and Kara Sea

classification in both seasons (averaged result over 10 repetitions). Most of the discrepancies between the
original classification and the classifications with perturbed SIC anomalies are found in the boundaries
between the sea ice regions. When the noise amplitude was increased to 0.5 standard deviations the percent-
age of matching grid points decreased to 86% for the autumn season and 83% for the early winter season. One
region that was found to be relatively sensitive in the tests with large perturbations was the northern Bering
Sea and Chukchi Sea in early winter, where some of the grid points could be classified as either W4 or W2.
On the whole, the sensitivity tests show that the sea ice classifications presented here are robust in the
presence of random errors that are comparable to the observation uncertainties.

3.2. Regional Sea Ice Extent Trend and Variability in the Arctic
The average RSIEs in each sea ice region are shown in Figures 3 and 4 for the autumn and early winter season,
respectively, with the total Arctic SIEs plotted in Figures 3a and 4a. We find the largest negative linear trend
in RSIE during autumn in the A1 region (the Beaufort Sea), closely followed by A9 (the Barents-Kara Seas) and
A4 (the Laptev-East Siberian Seas), all around −20% per decade relative to their average RSIEs over the whole
time period. The linear trends in RSIE decrease in these regions are substantially larger than the negative trend
in the total SIE over the whole Arctic region during the same months (−12.5% per decade). It is also apparent
that the decrease in autumn RSIE has accelerated in most regions, yielding the accelerating decline in the
total autumn Arctic SIE that has been noted by previous studies [e.g., Comiso et al., 2008]. This accelerating
negative trend in RSIE is well captured by the nonlinear trends obtained from the EEMD analysis, shown as
dashed black lines in Figure 3. Overall, the RSIE trends differ between sea ice regions in autumn, and different
regions exhibit distinct features of interannual RSIE variability.

Our RSIE analysis reveals that the anomalously low total Arctic SIE in 2007 was caused by a combination of
a steady negative trend of RSIEs in most regions in the recent decade, plus a large loss of sea ice mainly in
the A1, A2, A3, and A4 regions in 2007, all located around the Laptev-East Siberian Seas and the Beaufort Sea.
A3 north of the northern Laptev-East Siberian Seas, in particular, shows a relatively steady RSIE of approxi-
mately 0.6 million km2 until 2007, when it abruptly dropped to less than one third of its original value. After
2007, the RSIE in A3 exhibits a more prominent year-to-year variability that is similar to the changes in the
total SIE, likely due to some thinner first-year sea ice replacing multiyear ice in this region. The record-low
Arctic SIE observed in 2012 was associated with anomalously low RSIE in multiple sea ice regions, including A1,
A2, A3, A4, and A5 (located around the Laptev-East Siberian Seas and the Beaufort Sea), A9 (the Barents-Kara
Seas), and to some extent A6 (around Baffin Bay).
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Figure 3. Time series of average Arctic SIE and RSIEs during autumn (September–October) in (a) the whole north polar region and (b–j) the sea ice regions
depicted in Figure 2a. Black dashed lines show the nonlinear and nonstationary trends obtained using the EEMD method. Red vertical lines mark 2˜years of
exceptionally low total Arctic SIE (2007 and 2012). The numbers within parentheses in the titles show the linear trend in SIE/RSIE in a particular region relative
to the 1979–2014 average SIE/RSIE in that region.

Figure 4 shows the time series of SIE and RSIEs in the early winter sea ice regions. Note that the RSIEs in 1987
were omitted because of a large amount of missing satellite data in December that year. The largest linear
decline in early winter RSIE is found in the W3 region around Hudson Bay (−12.4% per decade) followed by
W6 in the Barents-Kara Seas (−10.7% per decade). The magnitudes of the linear trends in these regions are
about 2–3 times larger than the linear trend in the total early winter Arctic SIE (−4.1% per decade). Compared
with W3 and W6, the other sea ice regions show considerably smaller linear trends in sea ice loss. The nonlin-
ear trends from the EEMD analysis show that the total Arctic SIE in early winter remained relatively stable prior
to 1990, decreased with an accelerating negative trend in the late 20th and early 21st century and slowed
down its decline in the last decade, largely due to the large recovery of SIE in 2013 and 2014. The Laptev-East
Siberian Seas (W1) and the Barents-Kara Seas (W6) still exhibit an accelerating negative trend in their RSIEs
at the end of the time series. The other sea ice regions show negative but decelerating nonlinear trends.
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Figure 4. Time series of average Arctic SIE and RSIEs early winter (November–December) in (a) the whole north polar
region and (b–g) the sea ice regions depicted in Figure 2b. Black dashed lines show the nonlinear and nonstationary
trends obtained using the EEMD method. Red vertical lines mark 2 years of exceptionally low total Arctic SIE (2007 and
2012). The numbers within parentheses in the titles show the linear trend in SIE/RSIE in a particular region relative to
the 1979–2014 average SIE/RSIE in that region.

All regions show a recovery of sea ice in the most recent year (2014) except for W4 (the Greenland-
Bering-Chukchi Seas), where 2014 had the second lowest RSIE on record, comparable only to the record-low
RSIE in 2007. Overall, the trends in Arctic RSIEs are all negative in both seasons and differ only in magnitude.

In Figures 5 and 6 we subtracted the nonlinear EEMD trends from the RSIEs in September–October and
November–December, respectively, to focus on the interannual variability of the total Arctic SIE and RSIEs.
The SIE and RSIEs were standardized to one standard deviation to facilitate comparison between different
regions. Figure 5a shows that the total autumn Arctic SIEs in 2007 and 2012 were anomalously low even
without the nonlinear trend. There is a strong relationship between the autumn RSIE variability in the Laptev-
East Siberian Seas (A4) and the total SIE variability, with a shared variance of 44.6%. The total SIE is also well
related to the RSIE variability in the Beaufort Sea (A1; 34.9% shared variance) and, somewhat surprisingly, the
northern part of the Laptev-East Siberian Seas (A3; 36.1% shared variance). (Note that the shared variances
add up to more than 100% because the RSIEs also share variance with each other.) A2 north of the Beaufort
Sea and A9 in the Barents-Kara Seas both share about one fourth of their variance with the total SIE, while the
RSIEs in the remaining regions are weakly correlated to the SIE in the whole Arctic region. The RSIE anomalies
in A7 and A8 in the Greenland Sea and north of the Queen Elizabeth Islands are particularly independent of
the total SIE variability (1.0% and 0.0% shared variance, respectively). A8 reflects to a large part sea ice along
the coasts, and it therefore makes sense that the RSIE in this region exhibits variability that is unrelated to the
total SIE in the Arctic Ocean. The RSIE in the Greenland Sea (A7) is well related to the total SIE in the first one
third of the time series (correlation coefficient of about 0.7), but in the latter two thirds, especially in the most
recent decade, the two time series are strongly anticorrelated (correlation coefficient of about −0.5 to −0.6),
resulting in a weak correlation over the whole time period.
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Figure 5. (a–i) Time series of regional Arctic RSIE anomalies in autumn (September–October). The anomalies were standardized to one standard deviation
after subtracting the nonlinear trends from the original time series. Black dotted lines show the detrended SIE anomalies in the whole Arctic region. Red vertical
lines mark 2 years of exceptionally low Arctic SIE (2007 and 2012). The numbers within parentheses in the titles show the percentage of shared variance (r2)
between the total SIE anomaly variability and the RSIE anomaly variability in a particular sea ice region.

We note that the sea ice in the Greenland Sea (A7) shows a strong multiyear variability in the first half of
the time series, but in the latter half there is large interannual variability. The interannual RSIE variability in
the region north of the Queen Elizabeth Islands and along the coasts (A8), on the other hand, has decreased
in the recent decade compared with the relatively large variability in the beginning of the time series. The
Beaufort Sea (A1) exhibits a rather regular year-to-year variation in its RSIE in the first half. In 1998 there was
huge loss of sea ice in the Beaufort Sea region, and afterward the RSIE variability in the Beaufort Sea became
more irregular. The RSIE in the Barents-Kara Seas (A9) has been unusually low in the recent decade even
with the long-term negative trend removed, especially in 2012, although the negative RSIE anomaly in 2012
was not unprecedented, as RSIE anomalies of similar magnitudes were observed in 1984, 1985, and 1995. All
sea ice regions except A4 in the Laptev-East Siberian Seas show a positive RSIE anomaly in the most recent
year (2014).

Figure 5c reveals that the large RSIE decrease in 2007 in the A3 region north of the Laptev-East Siberian
Seas was highly unusual, about five standard deviations below the trend line. This large RSIE anomaly clearly
demonstrates the benefits of using EEMD to obtain the long-term trend. A linear fitting would be heavily
skewed toward the negative anomaly in 2007, resulting in an artificially large negative trend, while a polyno-
mial fitting would have to be carefully chosen to match the trend, and would likely not be robust to future
observations. The trend line from the EEMD analysis is not as heavily influenced by the 2007 anomaly because
this RSIE change occurs on a time scale shorter than the low-frequency variability that makes up the trend.
Thus, the EEMD analysis considers the 2007 anomaly to be a large deviation from the trend rather than part
of the long-term trend.

In early winter the total Arctic SIE is mostly controlled by two sea ice regions, W3 and W6 in Hudson Bay and
the Barents-Kara Seas, respectively, sharing 27.2% and 25.6% of their variance with the total SIE (see Figure 6).
The other sea ice regions in early winter share less than 10% variance with the total SIE. The W1 region in
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Figure 6. Time series of regional Arctic RSIE anomalies in early winter (November–December). The anomalies were standardized to one standard deviation
after subtracting the nonlinear trends from the original time series. Black dotted lines show the detrended SIE anomalies in the whole Arctic region. Red vertical
lines mark 2 years of exceptionally low Arctic SIE (2007 and 2012). The numbers within parentheses in the titles show the percentage of shared variance (r2)
between the total SIE anomaly variability and the RSIE anomaly variability in a particular sea ice region.

particular, located in the Laptev-East Siberian Seas just east of the W6 region, is mostly unrelated to the total
SIE, with only 0.3% shared variance between the two time series. This is a striking contrast to the autumn
season when the RSIE in the Laptev-East Siberian Seas (A4) is strongly related to the total SIE (44.6% shared
variance). W2 in the Beaufort Sea and along the east coast of Greenland is the early winter region that exhibits
the strongest decadal variability and relatively small trend. The RSIE in W2 was anomalously low for almost a
decade in the late 20th century and early 21st century, while the detrended RSIE was relatively high the decade
before that. In the most recent decade the RSIE in W2 has been near or slightly above the trend line. Recently,
there has been a marked increase in the magnitude of RSIE variability in the Barents-Kara Seas (W6), with a
large decrease in RSIE in 2012 of more than 3 standard deviations that was unprecedented in the satellite
period even with the trend removed. W6 is the only early winter region that shows a clear signature of the

Figure 7. Correlations between detrended RSIEs in different sea ice regions during (a) autumn (September–October)
and (b) early winter (November–December). A0 and W0 denote the total Arctic SIE anomalies in autumn and early
winter, respectively. The numbers show the correlation coefficients, positive correlation coefficients are shaded red,
and negative correlation coefficients are shaded blue. Bold correlation coefficients are statistically significant at the
0.05 significance level.
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large loss of autumn RSIE in 2012. Indeed, although the total early winter Arctic SIE was well below the trend
line in 2012, this deviation was not unusually low when considering the interannual variability of the whole
time series, only slightly more than one standard deviation below the trend.

Figures 7a and 7b show the correlations of interannual RSIE variability between sea ice regions in the same
season in September–October and November–December, respectively. As given above, we use A0 to denote
the total Arctic SIE in the autumn season, and W0 for the total SIE in early winter. The correlation coefficients
were calculated after subtracting the nonlinear trends from the SIE and RSIEs. Most sea ice regions in autumn
show a positive correlation with the other regions (Figure 7a). As previously noted, the majority of the regions
show a moderate to strong positive correlation with the total SIE; exceptions are the A6, A7, and A8 regions
around the Canadian Arctic Archipelago, the Greenland Sea, the Queen Elizabeth Islands, and along the coasts.
The correlations between RSIE anomalies in sea ice regions close to each other tend to be moderate to strong.
A7 in the Greenland Sea is not strongly correlated to any other regions and is the only region with significant
anticorrelations in autumn, likely due to sea ice drift from the Arctic Basin to the Greenland Sea through Fram
Strait. The interannual RSIE variability in the Barents-Kara Seas (A9) is mostly independent from the other sea
ice regions, but it still plays a significant role for the total autumn SIE variability in the Arctic.

In early winter the correlations of RSIEs between sea ice regions are generally not as strong as in autumn and
show a larger number of significant negative correlations (Figure 7b). Although the total SIE variability in early
winter is mostly controlled by the RSIE variability in Hudson Bay (W3) and the Barents-Kara Seas (W6), these
two regions are not well related to each other. The RSIE variability in the Barents-Kara Seas (W6) is moderately
positively correlated to the RSIE in the Laptev-East Siberian Seas (W1) and weakly to moderately anticorrelated
with the other regions.

The correlations between the sea ice regions in autumn and early winter are shown in Figure 8. We find weak
to moderate positive correlations between RSIEs in autumn and the total SIE (W0) in winter, with statistically
significant correlations between the total early winter Arctic SIE and the RSIEs in the A2 and A5 regions north
of the Beaufort Sea and in the Canadian Arctic Archipelago. On the contrary, a large total SIE in autumn (A0)
is not well related to large RSIEs in winter except for in the Barents-Kara Seas (W6). W2, W3, and W4 in the
western Arctic show moderate to strong positive correlations with autumn RSIEs in similar locations to
the winter regions. The early winter RSIE in the Barents-Kara Seas (W6) is strongly positively correlated to
the autumn RSIE in the approximate same location (A9), with a shared variance of 37%, and is also well related
to the autumn RSIE in the distant A2 region.

3.3. Winter Weather Patterns Associated With Regional Arctic Sea Ice Extent Variability
Finally, we investigated the question whether the RSIE variabilities are associated with different winter
weather patterns than the total Arctic SIE variability. We approached this question by regressing detrended
2 m temperature and SLP anomalies onto the sign-reversed and detrended RSIEs and total Arctic SIE. It is
important to emphasize that our regression analyses reveal only statistical relationships, and although the
regressions are lagged, correlations do not imply causation. Nevertheless, the regressions onto the RSIEs may
explain some of the atmospheric variability associated with the total Arctic SIE and could point out Arctic
regions where the autumn and early winter sea ice variabilities are strongly correlated to the weather patterns
later in winter.

Figure 9 shows maps of wintertime (January–March) averaged 2 m temperatures regressed onto the
detrended and standardized autumn SIE and RSIES. Because the SIE and RSIEs in the regression analyses were
sign reversed, a positive regression indicates a positive 2 m temperature anomaly occurring with a negative
SIE or RSIE anomaly (the amplitude corresponds to an SIE or RSIE anomaly of one negative standard deviation).
A reduced total autumn Arctic SIE is associated with cooler temperatures over the northern Eurasian continent
and warmer temperatures over Greenland and the Labrador Sea. This dipole in 2 m temperatures between
the midlatitude and high latitude is commonly known as the Warm Arctic-Cold Continents pattern and has
previously been attributed to sea ice loss in the Arctic [e.g., Cohen et al., 2013; Overland et al., 2011]. However,
in our analyses the continental cooling associated with the total Arctic SIE variability over the 1979–2014
period is statistically significant in only a small part of Russia. When performing the regression analysis without
detrending the 2 m temperatures and total SIE, we find a stronger positive 2 m temperature anomaly in the
Arctic and weak and mostly insignificant signals in the midlatitudes.
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Figure 8. Correlations between detrended total and regional RSIEs in autumn (September–October) and early winter
(November–December). A0 and W0 denote the total Arctic SIE anomalies in autumn and early winter, respectively.
The numbers show the correlation coefficients, positive correlation coefficients are shaded red, and negative correlation
coefficients are shaded blue. Bold correlation coefficients are statistically significant at the 0.05 significance level.

Looking at the 2 m temperature regression patterns in Figure 9 associated with autumn RSIEs, we find that
wintertime cooling of the continents is related to anomalously low RSIE in mainly two regions, the Beaufort
Sea (A1) and the Barents-Kara Seas (A9). RSIE variability in the Beaufort Sea shows a similar 2 m temperature
regression pattern as the regression onto the total Arctic SIE, which is not surprising given the high corre-
lation between the two SIEs (Figure 7a), but the cooling associated with reduced RSIE in A1 is stronger and
statistically significant over most of the northern Eurasian continent. Reduced RSIE in the A9 region in the
Barents-Kara Seas is associated with a wintertime warming over the Barents-Kara Seas and an even more
widespread continental cooling that affects most of northern Europe and Russia. A closer examination of the
regression patterns using monthly means instead of seasonal means reveals that the continental cooling asso-
ciated with reduced sea ice in A1 (the Beaufort Sea) is most prominent in March, while the cooling pattern
associated with A9 (the Barents-Kara Seas) is seen in January and February (not shown).

Autumn RSIE reductions in the Greenland Sea and north of the Beaufort Sea (A7 and A5) are associated with a
warming over Greenland and anomalously low 2 m temperatures over northern Russia. RSIE anomalies around
the Canadian Arctic Archipelago and in Baffin Bay (A2 and A6) do not show a strong relation with wintertime
2 m temperatures except for a cooling over Alaska occurring with reduced RSIEs. The significant 2 m tem-
perature anomalies associated with reduced sea ice cover along the coasts and north of Greenland and the
Queen Elizabeth Islands (A8) are also constrained to the Arctic region, with anomalously high temperatures
along the coast of northern Canada and a cooling over the Barents-Kara Seas. Lastly, the 2 m temperature
regression patterns onto the RSIE anomalies in A4 and A3 (the Laptev-East Siberian Seas and northward of the
Laptev-East Siberian Seas) show statistically significant signals in only small regions that may arise by chance.
The RSIE in A4 shares a substantial amount of variance with the total Arctic SIE (Figure 5d), and the weak cor-
relation between the RSIE in this region and 2 m temperatures during winter could therefore mask some of
the correlations that are found with the RSIEs in other regions when considering only the total Arctic SIE.

Figure 10 shows the corresponding regressions of SLP anomalies onto the autumn SIE and RSIE anomalies.
A reduction in the total autumn Arctic SIE is associated with a circulation pattern that resembles the
negative phase of the Arctic Oscillation, the leading mode of SLP variability in the Northern Hemisphere
[Thompson and Wallace, 1998], with a spatial correlation of−0.79 between the regression pattern and the first
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Figure 9. Linear regression of detrended average 2 m temperature in middle to late winter (January through March) onto the sign-reversed, detrended, and
standardized autumn SIE anomalies in the whole Arctic region and the RSIEs in all Arctic sea ice regions. The text labels describe the approximate geographical
location of the sea ice regions (see Figure 2a for more precise locations). Thick black contours indicate regions where the regression coefficients exceed the 95%
significance level.
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Figure 10. Linear regression of detrended average SLP in middle to late winter (January through March) onto the sign-reversed, detrended, and standardized
autumn SIE anomalies in the whole Arctic region and the RSIEs in all Arctic sea ice regions. The text labels describe the approximate geographical location
of the sea ice regions (see Figure 2a for more precise locations). Thick black contours indicate regions where the regression coefficients exceed the 95%
significance level.

Empirical Orthogonal Function (EOF1) of wintertime SLP anomalies (the spatial fields were weighted by the
square root of the cosine of latitude prior to the correlation analysis to account for the decrease in grid area
with latitude). However, the regression pattern is mostly insignificant except for the positive action center over
the Arctic. Negative RSIE anomalies in the Beaufort Sea (A1) are associated with a similar circulation pattern but
with the positive action center over the Arctic shifted toward the Laptev Sea (spatial correlation of −0.84 with
EOF1). The SLP regression pattern that most resembles the negative phase of the Arctic Oscillation is associ-
ated with reduced sea ice in the Barents-Kara Seas (A9), with a significant weakening of the Azores high and the
Icelandic low, and a strong negative spatial correlation with EOF1 (r =−0.92). All three regression patterns
have a large vertical extent stretching through the entire troposphere and a roughly equivalent barotropic
structure (spatial correlation coefficients between 1000 and 300 hPa geopotential height regression patterns
range from 0.69 to 0.72). These anomalous circulation patterns with higher than usual SLP over the Arctic
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Figure 11. Linear regression of detrended monthly mean (a and b) 2 m temperature and SLP (c and d) in March
(Figures 11a and 11c) and February (Figures 11b and 11d) regressed onto the regional autumn RSIE in the A1 region
(the Beaufort Sea; left column) and the A6 region (Baffin Bay; right column).

could explain some of the continental cooling in Figure 9 associated with reduced sea ice in the Beaufort Sea
(A1) and the Barents-Kara Seas (A9).

In the regression analyses using monthly mean SLP, the regression patterns associated with RSIE reduction in
the A1 region (the Beaufort Sea) do not project strongly onto the Arctic Oscillation in any individual winter
month. Instead, the A1 regression pattern in March resembles a Rossby wave train propagating over the Kara
Sea, Chukchi-Bering Seas, and the North Pacific Ocean (Figure 11c). This is also the month that shows the
most widespread continental cooling associated with reduced RSIE in A1 (Figure 11a). A similar wave train
is identified in the composite difference of SLP fields between low and high RSIE anomaly years (below and
above one standard deviation, respectively; not shown).

A significant center of positive SLP anomalies over the North Pacific Ocean is associated with decreased RSIEs
in the A6 and A2 regions (in Baffin Bay and around the Canadian Arctic Archipelago). This circulation anomaly
pattern is especially strong in February, with a maximum value over 4.5 hPa associated with one negative
standard deviation of RSIE anomalies in A6 (Figure 11d). The resulting ridge west of North America favors
increased advection of cold polar air over the North American continent, increasing the risk of unusually cold
temperatures over Alaska and northwestern Canada (Figure 11b). We remark that reduced RSIEs in Baffin Bay
and around the Canadian Arctic Archipelago are the only regions that show significant links with anomalously
cold winters in the North American continent. Coincidental with the northwest North American cooling, there
is a warming around the Chukchi-Bering Seas (Figure 11b), likely related to the anomalous southerly winds
associated with the SLP pattern in Figure 11d. The SLP regression patterns associated with the RSIEs in the A6
and A2 regions project onto the second leading mode of SLP variability in the Northern Hemisphere, which is
related to the Pacific/North American pattern [Barnston and Livezey, 1987]. The spatial correlation coefficients
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Figure 12. Linear regression of detrended average 2 m temperature in middle to late winter (January through March) onto the sign-reversed, detrended,
and standardized early winter SIE anomalies in the whole Arctic region and the RSIEs in all Arctic sea ice regions. The text labels describe the approximate
geographical location of the sea ice regions (see Figure 2b for more precise locations). Thick black contours indicate regions where the regression coefficients
exceed the 95% significance level.

with the second Empirical Orthogonal Function are −0.82 for the A6 (Baffin Bay) region and −0.74 for the A2
(the Canadian Arctic Archipelago) region. In March the SLP regression with reduced RSIE in A6 is somewhat
reminiscent of the positive phase of the AO, with a strengthening of the Icelandic low and the Azores high
and a weakening of the Aleutian low, although the latter is not statistically significant.

Sea ice retreat in the Greenland Sea and north of the Beaufort Sea (A7 and A5) is associated with a weak
seesaw in SLP between anomalously low pressures in the midlatitudes and anomalously high pressures in
the high latitudes. These regression patterns show some similarities with the negative phase of the Arctic
Oscillation (pattern correlation coefficients with EOF1 are −0.67 for A7 and −0.63 for A5). One remarkable
feature of the circulation anomaly patterns associated with A7 and A5 is that they extend all the way up into
the stratosphere, showing significant regression coefficients with geopotential height anomalies even at the
2 hPa pressure level. The stratospheric signal shows higher than usual geopotential heights over the Arctic
and North Eurasia with reduced RSIEs in these regions, consistent with a weakening of the stratospheric polar
vortex (not shown). The RSIEs in the Laptev-East Siberian Seas (A4), north of the East Siberian Sea (A3), and
north of the Queen Elizabeth Islands and along the coasts (A8) do not show extensive significant regression
patterns with the wintertime SLP.

Turning our attention to winter weather patterns associated with the Arctic SIE and RSIE variability in early
winter, we find that reduced total Arctic SIE in early winter is related to a Warm Arctic-Cold Continents
dipole in 2 m temperature between Greenland-Baffin Bay-Davis Strait-Labrador Sea and the northwestern
Eurasian content (Figure 12). The anomalously high temperatures in the vicinity of Greenland associated with
reduced total SIE are mostly related to regional retreat of sea ice in the Beaufort Sea (W2) and Hudson Bay
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Figure 13. Linear regression of detrended average SLP in middle to late winter (January through March) onto the sign-reversed, detrended, and standardized
early winter SIE anomalies in the whole Arctic region and the RSIEs in all Arctic sea ice regions. The text labels describe the approximate geographical location
of the sea ice regions (see Figure 2b for more precise locations). Thick black contours indicate regions where the regression coefficients exceed the 95%
significance level.

(W3), while the cold temperatures over the Eurasian content are correlated with negative RSIE anomalies

in the Barents-Kara Seas (W6). The early winter RSIE variabilities in the Laptev-East Siberian Seas (W1),

Greenland-Bering-Chukchi Seas (W4), and the Sea of Okhotsk and the Canadian Arctic Archipelago (W5)

do not show a highly significant relationship with seasonal averaged 2 m temperature in January-March.

Looking at individual months, we find that a negative early winter RSIE anomaly in the Beaufort Sea (W2)

is associated with colder temperatures in Russia in March, while early winter RSIE reduction in the large

Greenland-Bering-Chukchi Seas region (W4) is related to anomalously low 2 m temperatures in eastern North

Europe and western Russia in February.

Figure 13 shows the SLP regression patterns associated with anomalously low early winter Arctic SIE and

RSIEs. The regression onto the total early winter Arctic SIE variability shows a similar circulation anomaly to

the regression onto the total autumn Arctic SIE (Figure 10). The spatial correlation between this circulation

anomaly pattern associated with early winter SIE reduction and EOF1 is −0.71. Most of the association with

the negative Arctic Oscillation-like pattern is related to sea ice retreat in the Barents-Kara Seas (W6), whose

SLP regression pattern has a −0.66 spatial correlation with EOF1. The other regions (W1–W5) do not show

more significant relations with wintertime SLP anomalies than would be expected by chance. In general, we

find that the autumn RSIEs show stronger associations with the January-March circulation patterns than the

early winter RSIEs.
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4. Summary and Discussion

In this study we used satellite observations from Nimbus-7 and DMSP-F8, DMSP-F11, and DMSP-F17 to
examine the regional changes in Arctic sea ice cover on an interannual time scale. First, we divided the
Arctic sea ice cover into several smaller regions in both autumn (September–October) and early winter
(November–December) through an objective self-organizing map classification based on the interannual sea
ice concentration variability in each grid point. Next, we calculated the total Arctic sea ice extent (SIE) and
the regional sea ice extent (RSIE) in each Arctic region and detrended the SIE and RSIEs through a nonlinear
and nonstationary method known as Ensemble Empirical Mode Decomposition (EEMD). EEMD is an adap-
tive method that decomposes the data empirically, i.e., it does not make any a priori assumptions about the
shape of the data, and captures well the strongly nonlinear trends in SIE and RSIEs. Finally, we regressed
detrended 2 m temperature and SLP anomalies in winter (January–March) onto the EEMD-detrended RSIE
anomalies in different sea ice regions to find out how large-scale winter weather patterns are associated with
the interannual RSIE variability in each region.

We find noticeable differences in trends and variability in RSIE in different Arctic sea ice regions. The negative
linear trends in RSIE are especially large in three regions during autumn, in the Beaufort Sea (A1 region), the
Barents-Kara Seas (A9), and the Laptev-East Siberian Seas (A4), all three approximately −20% per decade rel-
ative to their average RSIE over the whole time period (1979–2014). During early winter the largest trends in
RSIE are found in the two sea ice regions that cover Hudson Bay (W3) and the Barents-Kara Seas (W6), around
−10% per decade.

Sea ice regions generally show a medium to high positive correlation in interannual autumn RSIE variability
with nearby regions, and more than half of the autumn regions are strongly correlated with the total autumn
Arctic SIE. One remarkable exception is the region in the Greenland Sea and north of the Beaufort Sea (A7)
where the correlation between the RSIE anomalies and the total detrended autumn Arctic SIE changes sign,
from a positive correlation between 1979 and around 1994 to a negative correlation from 1995 to 2013,
yielding a weak correlation over the whole time period. This is also the only region where the RSIE anomalies
are significantly anticorrelated with RSIE anomalies in other regions (significant negative correlations with sea
ice in the Laptev-East Siberian Seas and around the Canadian Arctic Archipelago, and marginally significant
negative correlations with sea ice in the region north of the Laptev-East Siberian Seas). Furthermore, the RSIE
anomalies in this region show an indication of a regime shift around the same time, from dominantly multi-
year (5–6 years) variability in the earlier time period to stronger interannual variability in the recent decade.
We speculate that this nonstationarity of the RSIE anomaly time series in the Greenland Sea and north of the
Beaufort Sea is due to a reduction of thicker multiyear ice in this region and changes in the general circulation,
such as a shift in the North Atlantic Oscillation [Hilmer and Jung, 2000] or changes in the Arctic Dipole anomaly
[Wu et al., 2006], which play important roles for driving sea ice export out of the Arctic basin, through Fram
Strait, and into the Greenland Sea.

The autumn RSIE in the Barents-Kara Seas (A9) varies mostly independently from the other sea ice regions
but is well related to the total SIE variability. One possible reason for the lack of significant correlations in this
region with other sea ice regions is that the sea ice in the Barents-Kara Seas is more strongly influenced by
oceanic transport from and to the North Atlantic Ocean [Onarheim et al., 2015].

Correlation coefficients between sea ice regions in early winter are generally not as strong as in autumn. The
total winter SIE is significantly correlated with only the RSIE variability in Hudson Bay (W3) and the Barents-Kara
Seas (W6), which is not surprising as many other parts of the Arctic are almost completely ice covered in
this season or have yet to form much sea ice. There is a significant persistence of sea ice anomalies between
the autumn and early winter seasons in some regions, especially in the Greenland Sea (A7 and W2) and the
Barents-Kara Seas (A9 and W6).

Regressions of wintertime 2 m temperature anomalies onto the sign-reversed total autumn and early winter
SIE anomalies show a dipole between warming of the Arctic and cooling of the midlatitudes associated with
reduced sea ice, reminiscent of the Warm Arctic-Cold Continents pattern. However, significant regressions
are rather limited in spatial extent, with most of the cooling found in northern Eurasia. Repeating the regres-
sion analysis with the RSIE anomalies resulted in stronger regression coefficients for some sea ice regions. The
Warm Arctic-Cold Continents pattern is more strongly associated with autumn RSIE reduction in the Beaufort
Sea (A1) and the Barents-Kara Seas (A9). There is a distinct difference in the regression patterns between these
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two regions; anomalously low autumn sea ice cover in the Beaufort Sea is associated with a widespread cool-
ing of northern Eurasia in March, while the cooling associated with sea ice loss in the Barents-Kara Seas is found
in January and February. The former cooling pattern is associated with a tripole SLP pattern in March reminis-
cent of a Rossby wave train, whereas the SLP regression pattern associated with negative RSIE anomalies in
the Barents-Kara Seas projects strongly onto the negative phase of the Arctic Oscillation.

The association between autumn sea ice reductions in the Barents-Kara and the negative phase of the win-
tertime Arctic Oscillation agrees well with previous observational studies [Koenigk et al., 2016; Wu and Zhang,
2010] and modeling studies [e.g., Pedersen et al., 2015; Petoukhov and Semenov, 2010]. Furthermore, our results
of different spatial SLP patterns associated with sea ice reductions in the Barents-Kara Seas and the Beaufort
Sea indicate a shift of the Arctic Oscillation toward the west and east, respectively. Pedersen et al. [2015] found
in their model experiments that sea ice loss in the Atlantic sector of the Arctic causes a westward shift of the
North Atlantic Oscillation, while sea ice loss in the Pacific sector causes an eastward shift, and this result is also
consistent with the observational results of Wu and Zhang [2010].

Regressing the same atmospheric variables onto the early winter Arctic SIE anomalies in the whole Arctic
region produced similar results as the regressions onto the total autumn Arctic SIE anomalies. Although the
regions of significant regression coefficients are slightly larger in the case with the total Arctic SIE in early
winter, when considering the RSIE variability in the two seasons, we find that winter weather patterns are
generally more strongly associated with the RSIEs in autumn. SLP anomalies regressed onto the total early
winter Arctic SIEs are mostly related to the early winter RSIE variability in the Barents-Kara Seas (W6), which is
to a large part controlled by the autumn RSIE variability in the same region (37% shared variance). One reason
for the weaker association with the total Arctic SIE in autumn compared with early winter is that the autumn
RSIE anomalies in some regions are not well related to the winter weather patterns but still share a substantial
amount of variance with the total autumn SIE, thereby masking some of the correlations with other RSIEs in
the total SIE. These results highlight the potential importance of considering regional variations in Arctic SIE
variability.

We stress two caveats of the regression analyses. First, the Arctic SIE and RSIEs and the atmospheric variables
were detrended prior to the regressions to avoid artificial correlations due to common trends. This detrending,
however, also removes some of the signals associated with Arctic amplification and the large Arctic sea ice
loss in recent years. When not subtracting the trends, we generally find a more prominent warming over the
Arctic and very little statistically significant cooling of the continents, as well as significant warming in the
midlatitudes associated with reduced RSIE in some regions. Second, the regression patterns show only statis-
tical links between Arctic SIE/RSIEs and atmospheric variables and do not necessarily imply a cause-and-effect
relationship. Some of the regression patterns are likely not caused by the RSIE anomalies alone. The focus
of this study is to diagnose and describe the RSIE variability in the Arctic, and we examined winter weather
patterns associated with the RSIE variability in different regions to ascertain if the RSIEs reveal links with
atmospheric patterns that are not detected when considering the total Arctic SIE. We leave the investiga-
tion of causal mechanisms behind the links between Arctic RSIE variability and winter weather patterns to
future studies.

In conclusion, different regions in the Arctic exhibit distinct long-term trends and interannual variability in
their RSIE. Linear regressions of 2 m temperature and SLP anomalies onto RSIEs generally result in stronger
regression coefficients than when regressing the atmospheric variables onto the total SIE. We find that the
regressions onto the autumn RSIE in different sea ice regions show markedly different atmospheric patterns,
suggesting that regional variations in Arctic sea ice variability play an important role for the observed links
with atmospheric patterns, and that some of the signals may be lost if we consider only the total Arctic SIE.
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