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ABSTRACT

Tropical cyclones (TCs) are strongly influenced by fluxes of momentum and moist enthalpy across the air–

sea interface. These fluxes cannot be resolved explicitly by current-generation numerical weather prediction

models, and thereforemust be accounted for via empirical parameterizations of surface exchange coefficients

(CD for momentum and Ck for moist enthalpy). The resultant model uncertainty is examined through hun-

dreds of convection-permitting Weather Research and Forecasting Model (WRF) simulations of Hurricane

Katrina (2005) by varying four key parameters found in commonly used parameterizations of the exchange

coefficient formulas. Two of these parameters effectively act as multiplicative factors for the exchange co-

efficients over all wind speeds (one each forCD andCk); the other two parameters control the behavior ofCD

at very high wind speeds (i.e., above 33m s21). It is found that both the intensity and the structure of TCs are

highly dependent upon the two multiplicative parameters. The multiplicative parameter for CD has a con-

siderably larger impact than the one for Ck on the relationship between maximum 10-m wind speed and

minimum sea level pressure: CD alters TC structure, with higher values shifting the radius of maximum

winds inward and strengthening the low-level inflow; Ck only affects structure by uniformly strengthening/

weakening the primary and secondary circulations. The TC exhibits the greatest sensitivities to the two

multiplicative parameters after a few hours of model integration, suggesting that these parameters could be

estimated by assimilating near-surface observations. The other two parameters are likely more difficult to

estimate because the TC is only marginally sensitive to them in small areas of high wind speed.

1. Introduction

As most recently demonstrated by Hurricane Sandy

(2012), tropical cyclones (TCs) have the potential to

cause significant losses of life and property; minimiza-

tion of these losses requires accurate forecasts of TC

track, intensity, and size several days in advance. Over

the past two decades, despite tremendous improvements

in the prediction of TC position (track) since 1990, the

ability to forecast TC intensity has stagnated (Rappaport

et al. 2009). This disconnect highlights the advancements

and continued limitations of numerical weather pre-

diction (NWP) models: TC track is governed mostly by

large-scale steering flows that are increasingly better re-

solved by global models with advanced data assimilation;

TC intensity is highly sensitive to smaller-scale processes

(such as fluxes across the air–sea interface) that are

poorly resolved or parameterized even in regional me-

soscale models. In other words, improvements to TC

intensity forecasts require a reduction in themodel error

inherent to subgrid-scale parameterizations.

Large fluxes of moist enthalpy (sensible and latent

heat) from the sea surface are necessary but insufficient

for TC genesis, intensification, and persistence (e.g.,

Gray 1968). In addition to these enthalpy fluxes, mo-

mentum fluxes across the air–sea interface are believed

to be crucial in determining TC intensity. For exam-

ple, the well-known potential intensity (PI) theory of

Emanuel (1986)—which assumes a steady-state TC in

gradient and hydrostatic balance—gives analytic solu-

tions for the maximum tangential wind speed Vmax

and minimum sea level pressure (SLP) Pmin in non-

dimensional form (Emanuel 1995a,b):
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where Ck and CD are the surface exchange coefficients

of moist enthalpy and drag/momentum, respectively

(see appendix A); all other variables are defined in

appendix B. From (1) and (2), the ratio Ck/CD clearly is

an important factor in the pressure and wind of amature

storm. The sensitivity of simulated TC intensity to sur-

face fluxes has been shown in many different studies

conducted within the past half century (e.g., Ooyama

1969; Rosenthal 1971; Braun and Tao 2000; Bao et al.

2002; Bryan 2012; Green and Zhang 2013).

Unfortunately, fluxes of momentum and moist en-

thalpy across the air–sea interface remain poorly un-

derstood, especially for hurricane-force wind speeds;

a more detailed discussion can be found in Green and

Zhang (2013). Of particular importance is that CD—

once believed to increase monotonically with wind

speed (e.g., Charnock 1955)—appears to saturate (e.g.,

Donelan et al. 2004; Black et al. 2007; French et al.

2007) or decrease (e.g., Powell et al. 2003; Jarosz et al.

2007; Holthuijsen et al. 2012) for wind speeds above

;33m s21. Observations also suggest that CD is a func-

tion of radial distance and azimuth with respect to TC

center (Vickery et al. 2009; Holthuijsen et al. 2012).

Recent studies (Bao et al. 2012; Green and Zhang 2013)

have found that using a saturatedCD formula affects TC

structure and improves the ‘‘pressure–wind relation-

ship’’ between Pmin and Vmax. Interestingly, these find-

ings appear to hold for changes to CD over all wind

speeds (i.e., not just hurricane force), a point that will be

discussed in the results section. Because TC intensity

and structure are strongly influenced by air–sea fluxes,

the model error associated with the parameterization of

these processes must be as small as possible in order to

produce accurate TC forecasts.

One emerging approach toward reducing model error

is the use of data assimilation. Data assimilation is

a statistical method that uses observations to obtain

better estimates of the initial conditions, which is crucial

to producing accurate forecasts of highly nonlinear

systems such as the atmosphere (Kalnay 2003). Al-

though data assimilation is traditionally employed to

estimate state variables for which prognostic equations

exist, there is evidence that the estimation can be ex-

tended to model parameters for which prognostic

equations do not exist (e.g., Anderson 2001; Aksoy et al.

2006a,b; Zupanski and Zupanski 2006; DelSole and

Yang 2010; Hu et al. 2010; Ito et al. 2010, 2013; Peng

et al. 2013; Sraj et al. 2013). Parameter estimation can be

conducted in either a variational framework that re-

quires some form of climatological error covariance or

an ensemble framework that calculates error covariance

directly from an ensemble of simulations. Nielsen-

Gammon et al. (2010) note that model parameters are

suitable for estimation in an ensemble framework if

three conditions are met: observability (errors in ob-

served measurements do not yield large changes in es-

timated parameter values), simplicity (model output

varies smoothly with changes to the parameter), and

distinguishability (there is a strong correlation between

model parameter and state variables). We follow this

outline to examine whether model parameters associ-

ated with CD and Ck are suitable for estimation.

This particular research builds upon the work of

Green and Zhang (2013), focusing on parameterized

fluxes of momentum and moist enthalpy across the air–

sea interface used in convection-permitting limited-area

simulations of actual TCs. These flux parameterizations

are quite uncertain (particularly in the strong surface

winds associated with TCs) and have a substantial im-

pact on simulated TC intensity (e.g., Green and Zhang

2013 and references therein). A battery of experiments

that are similar to, but much more systematic and

comprehensive than those in Green and Zhang (2013),

are performed to examine the sensitivity of TC intensity

and structure to parametric uncertainties in the air–sea

fluxes. These sensitivity experiments also can provide

useful information in identifying which set of uncertain

parameters is suited for estimation. The remainder of

the paper is organized as follows. Section 2 outlines the

methodology of the sensitivity experiments, the results

of which are shown in section 3. A general discussion can

be found in section 4, followed by concluding remarks in

section 5.

2. Methodology

a. Model parameters affecting CD and Ck

A significant challenge in calculating surface fluxes

is that the functional forms of the exchange coefficients

for momentum CD and moist enthalpy Ck are un-

known. Thus, there are theoretically infinitely many

parameters1 that can be used to determine CD and Ck.

Consequently, it is only important that the chosen

formulas (introduced below) have a general agreement

with observations.2

1 The choice of parameters to evaluate may affect the relative

importance of each parameter.
2 The danger of overfitting data by using too many parameters is

highlighted in a quote attributed by Enrico Fermi to John von

Neumann (Dyson 2004): ‘‘With four parameters I can fit an ele-

phant, and with five I can make him wiggle his trunk.’’
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1) DRAG COEFFICIENT

Because there is mounting evidence that there are

multiple regimes (depending on wind speed and sea

state) of surface drag over the ocean, it is worthwhile to

investigate more than one parameter within a wind

speed–dependent formula for CD. To compare with

published results, we use the three parameters estimated

by Sraj et al. (2013), noting that the nonneutral stability

correction is accounted for elsewhere in the surface

layer code:

CD 5a[C0
D 1m3max(0,V2Vc)] , (3)

C0
D 5 1023(0:6921 0:071 ~V2 0:0007 ~V2), and (4)

~V5max(2:5,min[V,Vc]) , (5)

where V is the 10-m neutral wind speed (m s21); and a,

Vc, and m are the parameters to estimate (see Table 1).

It should be noted that (4) and (5) originate from Kara

et al. (2002) and can be found in the parameterization of

the Hybrid Coordinate Ocean Model (HYCOM; Bleck

2002). Figure 1 shows the sensitivities of CD and Ck to

a range of tested parameter values.3 Looking at (3)–(5)

and Fig. 1, a controls the magnitude of CD for all wind

speeds; Vc is the critical/threshold wind speed at which

CD switches regime; and m is a highly uncertain, and

likely overly simplistic, parameter that adds a linear

trend toCD only in the high-wind regime (V$Vc). Also

note in Fig. 1 that changes to CD (through a, Vc, andm)

yield changes to Ck.

2) MOIST ENTHALPY COEFFICIENT

There is an inconsistent treatment of the exchange

coefficients for sensible heat CH and latent heat CQ

(recall that moist enthalpy is the sum of sensible and

latent heat) among parameterization schemes: some set

CH 5 CQ 5 Ck, others have CH ’ CQ ’ Ck, and the

remainder haveCH 6¼CQ 6¼Ck (Green andZhang 2013).

In all of the experiments of this study, CH and CQ are

based upon the formulas used in version 3.4 of the Ad-

vanced Research Weather Research and Forecasting

Model (ARW-WRF) for namelist option isftcflx 5 2

(Brutsaert 1975; Garratt 1992; Green and Zhang 2013):

CH 5
CD

11b21C1/2
D (7:3Re1/4* Pr1/22 5)

and (6)

CQ 5
CD

11b21C1/2
D (7:3Re1/4* Sc1/22 5)

, (7)

where b is an ad hoc parameter to be estimated [see

Table 1 of this manuscript and Eqs. (11) and (12) of

Green and Zhang (2013)]; Pr 5 0.71 and Sc 5 0.60 are

the Prandtl and Schmidt numbers, respectively (Garratt

1992);4 Re*5 u*z0/n is the roughness Reynolds number

with friction velocity u*, roughness length z0, and kine-

matic viscosity of air n; and for both (6) and (7), CD is

calculated from (3). Again, the correction for nonneutral

stability is made elsewhere in the surface layer code.

From (6) and (7) and Fig. 1 of Green and Zhang

(2013), it is evident that CH ’ CQ. Because air–sea

fluxes of latent heat are significantly larger than those

of sensible heat in TC environments (Zhang et al.

2008), it is assumed that CQ ’ Ck (and thus CH ’ Ck).

Also, because b does not impact CD, b has a first-order

effect on Ck; because Ck is a function of CD (a conse-

quence of similarity theory, see appendix A), the pa-

rameters a,Vc, andm have a second-order effect onCk.

It is, therefore, reasonable to ask if the effects ofCk can

truly be separated from those of CD given the func-

tional forms of (6) and (7). In section 4, we show that

these effects are reasonably distinguishable. The im-

plementation of the four parameters—a, Vc, m, and

b—in the numerical model sensitivity experiments is

described in the next section, after an overview of the

numerical model itself.

b. Experimental design

All of the sensitivity experiments used version 3.4.0 of

the ARW-WRF (Skamarock et al. 2008). Because of

computational constraints, only one real-data case was

examined: Hurricane Katrina, a major hurricane that

TABLE 1. Summary of model parameters tested.

Parameter Lower bound Upper bound Default value

a 0.4 1.1 1.0

Vc 20m s21 35m s21 32.5m s21

m 23.8 3 1025* 3.8 3 1025** 0.0

b 0.45 2.0 1.0

* For multiparameter experiments, the lower bound was m 5
21.9 3 1025 (see text).

** Sraj et al. (2013) used an upper bound of m 5 0.0.

3 The WRF surface layer code calculates surface fluxes using

roughness length z0 [which can be calculated from CD, cf. (A11)].

To prevent the code from ‘‘blowing up’’ during division by z0, an

additional constraint was added to keep z0 $ 1029m, which cor-

responds toCD. 0.33 1023. The smallest drag coefficient given in

the literature for an intense hurricane is CD 5 0.73 1023 for wind

speeds of 60m s21 [p. 7 of Holthuijsen et al. (2012)].

4Any of the parameters in (6) and (7), such as Pr and Sc, can be

estimated. Offline tests (not shown) reveal that CH and CQ are

more sensitive to b than to Pr or Sc.
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tracked across the Gulf of Mexico in late August 2005

(Knabb et al. 2006). With the exception of the pa-

rameterizations for CD and Ck, the simulations were

configured identical to Green and Zhang (2013); for

completeness, the details of the model setup are re-

peated here.

There were three domains—D01, D02, and D03 (re-

sults are from D03 unless otherwise stated)—with hor-

izontal grid spacings of 27, 9, and 3 km, respectively (all

domains used 43 vertical levels); the corresponding time

steps were 60, 20, and 20/3 s. Convection was explicitly

resolved in D02 and D03, and parameterized in D01 via

the Grell–Devenyi cumulus scheme (Grell and Devenyi

2002). Radiation was parameterized by the Rapid Ra-

diative Transfer Model for longwave (Mlawer et al.

1997) and the Dudhia (1989) scheme for shortwave.

Cloud microphysics were represented by the WRF

single-moment 6-class (with graupel) scheme (Hong and

Lim 2006), and the Yonsei University (YSU) planetary

boundary layer scheme (Hong et al. 2006) was used

with ‘‘MM5 similarity’’ (sf_sfclay_physics option 1) and

five-layer thermal diffusion over land. For all of the

experiments, single-column (1D) ocean mixing (Pollard

et al. 1972) was turned off to isolate the effects of ex-

change coefficient parameterizations.

There are two distinct components to the experi-

mental procedure. The first is an assimilation stage

identical to that of Green and Zhang (2013), which can

be summarized as follows. To start, a 60-member en-

semble was initialized at 0000 UTC 25 August 2005 by

adding perturbations to Global Forecast System (GFS)

initial conditions (ICs) and lateral boundary conditions

(LBCs); the ensemble was integrated forward until

1430UTC to generate a flow-dependent error covariance

matrix. Then, six rounds of airborne Doppler radar

velocity data were assimilated between 1430 and

2000 UTC using the ensemble Kalman filter (EnKF)

data assimilation technique (Zhang et al. 2009; Weng

and Zhang 2012). Last, the posterior mean of the

60-member ensemble at 2000 UTC was integrated

forward an additional 4 hours to 0000 UTC 26 August

2005. It should be noted that in this first 24-h period,

the domains were fixed in space and the surface fluxes

were parameterized using the WRF namelist option

isftcflx 5 2 as formulated in version 3.4.0.5

The second component of the experimental pro-

cedure is the sensitivity stage, during which numerous

simulations were run with the same ICs and LBCs

but with slightly different parameterizations of CD and

Ck. To examine parameter sensitivity as a function of

initial TC intensity, two different start times were used:

0000 UTC 26 August and 0000 UTC 27 August, al-

though the end time was the same for both (0000 UTC

31 August). For each start time, two sets of experiments

were run (as in Nielsen-Gammon et al. 2010): single

parameter (one parameter varied at a time) and multi-

parameter (all parameters varied simultaneously).

1) SINGLE-PARAMETER EXPERIMENTS

The single-parameter experiments—used to deter-

mine parameter observability (Nielsen-Gammon et al.

2010)—can also be thought of as four independent

FIG. 1. Plots of (top)CD and (bottom)Ck [technicallyCQ from (7), see text for discussion] as functions of 10-mwind speed for the single-

parameter experiments (see Table 1) that varied (a),(e) a; (b),(f) Vc; (c),(g) m; and (d),(h) b. Each shaded area represents the possible

range of exchange coefficients given the allowed range of parameter values; the labeled edge lines show the exchange coefficient curves

given by the minimum and maximum allowed parameter values. Blue lines denote exchange coefficient curves for the default value of the

varied parameter (cf. last column in Table 1).

5 The reasons for this are detailed in Green and Zhang (2013).

For the purposes of the present research, it is only important that

the surface flux parameterizations be consistent in the sensitivity

stage.
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experiments, one for each parameter. Let Ck be an ar-

bitrary model parameter such that C1 5 a, C2 5 Vc,

C3 5 m, and C4 5 b. For each Ck, 20 different values

Ck
x51,2,...,20 are generated at equally spaced intervals

within the allowed range of parameter values (e.g.,C1
1 5

amin 5 0.4 and C1
20 5 amax 5 1.1). Additionally, the

three parameters not being varied are fixed at their de-

fault values given in Table 1: for example, when Ck51

(i.e., the sensitivity to a is being tested), then Vc 5
32.5m s21, m 5 0, and b 5 1. A total of 160 (20 pa-

rameter values for each of 4 parameters for each of 2

start times) single-parameter simulations were run. One

concern was with the range of m values: looking at

Fig. 1c, large negative values of m yield CD values less

than 0.5 3 1023 (cf. footnote 3). Therefore, for the

multiparameter experiments, the lower limit of m was

revised to m 5 21.9 3 1025.

2) MULTIPARAMETER EXPERIMENTS

Parameter distinguishability is ascertained from multi-

parameter experiments (Nielsen-Gammon et al. 2010).

Here, as in the single-parameter experiments, each pa-

rameter Ck can have one of 20 possible values (as stated

above, the multiparameter experiments have a smaller

range of m values). Unfortunately, testing the entire pa-

rameter space (i.e., all 204 5 160 000 possible combina-

tions of a, Vc, m, and b) is computationally prohibitive.

Instead, 80 different rows of the 160 000 3 4 parameter

matrix

2
64
C1

1 ⋯ C4
1

..

.
⋱ ..

.

C1
20 ⋯ C4

20

3
75 were selected at random from

a uniform distribution (i.e., each row had an equal like-

lihood of being selected); then, 80 different simulations

(one for each set of parameter values) were run. The

same 80 sets of parameter values were used for both start

times (0000 UTC 26 and 27 August) for a total of 160

multiparameter simulations. The results shown below are

from the 320 successful simulations (160 single parameter

and 160 multiparameter).

3. Sensitivity of TC intensity and structure to
realistic parameter uncertainties

a. TC intensity

As is evident in Fig. 1, changes to the different model

parameters have varying degrees of influence onCD and

Ck; therefore, it would be expected that the different

model parameters have varying degrees of influence on

TC intensity (in terms of both maximum 10-m wind

speed and minimum SLP). Figures 2 and 3, which show

hourly output from the multiparameter sensitivity ex-

periments initialized at 0000 UTC 26 August (Fig. 3 also

shows experiments initialized at 0000 UTC 27 August),

are consistent with such an expectation. For example,

changes to Vc only marginally affect the exchange co-

efficients at strong surface wind speeds and conse-

quently have a minimal impact on TC intensity (as

indicated by the absence of statistically significant cor-

relations in Fig. 3). At the other extreme, both Ck and

TC intensity are highly sensitive to b, although this pa-

rameter does not appear to noticeably change the

pressure–wind relationship; note that increasing b (in-

creasing Ck) yields a stronger TC in terms of both

pressure (correlation coefficients approaching21 by the

time of landfall) and wind (correlations greater than 0.4

after 1–2 days). The two parameters with the greatest

impact on CD (a and m) also considerably impact TC

intensity. Moreover, consistent with prior results (Bao

et al. 2012; Green and Zhang 2013), changes to surface

momentum flux change the pressure–wind relationship

of the TC; that said, a and m change the pressure–wind

relationship in significantly different ways. The param-

eter m (which only impacts CD for wind speeds at or

above Vc) has statistically significant correlations with

maximum 10-m wind speed (larger m means larger CD

and thus weaker 10-m winds) but not with minimum

SLP. Changes to a (which impacts CD and Ck over all

wind speeds) yield statistically significant correlations

with both intensity metrics, but the pressure–wind re-

lationship is clearly changed because increasing a yields

TCs with weaker winds (correlations close to21 during

the first few hours) but with substantially lower mini-

mum SLP (correlations more negative than 20.4 until

just before landfall).

Figures 2 and 3 can also be used to identify simple

parameters (for future parameter estimation), which

ideally have a linear relationship with the various state

variables. Because the curves in Fig. 2 are colored ac-

cording to parameter value (from low values in blue to

high values in red), simple parameters will have intensity

curves that progress in a rainbow-like manner (i.e., the

colors appear ‘‘sorted’’ rather than jumbled). For ex-

ample, b is a simple parameter for both intensity met-

rics. Simplicity is evident for a with the exception of

10-m wind speed between approximately 6 and 72 h;

this exception is almost certainly a consequence of a

changing the pressure–wind relationship. Similarly, m

has a simple relationship with 10-m wind speed but only

after the TC has strong enough wind speeds over a suf-

ficiently large area (recall that m only matters for wind

speeds above Vc). It is difficult to assess the simplicity of

Vc because changes to this parameter have little effect

on TC intensity (in terms of both minimum SLP and

maximum 10-m wind speed) throughout the simulation

period. Figure 3 is consistent with Fig. 2 in that the
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simple (linear) parameters have statistically significant

linear correlation coefficients with TC intensity. The

single-parameter experiments were in agreement with

the multiparameter experiments in terms of simplicity

(not shown).

Beyond this point, we will focus on the effects of a and

b. From Figs. 1–3, it is clear that Vc has only minor im-

pacts not just on CD and Ck, but also on minimum cen-

tral pressure andmaximum 10-mwind speed. Parameter

m can have large impacts (particularly on CD; Fig. 1c),

but only for winds of hurricane force, including the

eyewall. Obviously, eyewall processes are crucial for TC

structure and intensity regardless of size. That said,

successful estimation for a parameter such asm requires

a storm with strong enough winds (i.e., greater than Vc)

over a large enough area (such that the covariance has a

large sample size), which is not the case for weaker TCs.

b. Azimuthally averaged TC structure

Thus far, the effects of the parameters on the simu-

lated TCs have only been examined in terms of the

‘‘point metrics’’ of intensity (minimum SLP and maxi-

mum 10-m wind speed). Particularly for parameters

that change the pressure–wind relationship, it is worth-

while to look at the spatial correlations (i.e., structural

changes) of the parameters. Figure 4 shows the corre-

lations between a and azimuthally averaged fields of

SLP and 10-m wind speed as a function of time and ra-

dial distance from TC center for multiparameter ex-

periments initialized at both start times; the ensemble

FIG. 2. Results from hourly output of the 80 multiparameter simulations initialized at 0000 UTC 26 Aug 2005. (from top to bottom)

Rows show the sensitivity of TC intensity tomodel parameters a,Vc,m, andb (as indicated). Time series of (left) minimumSLP (hPa) and

(middle) maximum 10-m wind speed (kt, 1 kt 5 0.5144m s21; dashed lines denote Saffir–Simpson hurricane wind scale intensities) are

given. (right) The relationship between minimum SLP and maximum 10-m wind speed (open circles mark hourly output; lines of best fit

also shown) during the first 91 h of the simulation (later times were omitted to remove the impact of landfall). Colors represent the

individual simulations, for parameter values ranging from the lowest tested value (dark blue) to the highest tested value (dark red).

JUNE 2014 GREEN AND ZHANG 2295



mean 10-m wind field is contoured for reference. There

are several striking features. After the simulated TCs

have intensified to hurricane strength, the effect of a on

the structure of the wind field is clear: largera (largerCD

for all wind speeds) results in a radius of maximum wind

(RMW) that is closer to the center, as indicated by the

increase in the 10-m wind inside the ensemble mean

RMW. As expected, larger a also weakens winds for all

locations outside the RMW. Throughout much of the

TC over nearly all times, the magnitude of the correla-

tion coefficient exceeds 0.8, a testament to the impor-

tance of a for low-level wind speeds. The relationship

between a and the azimuthally averaged SLP is some-

what less straightforward. In the far field (beyond

150 km from center), larger a yields a lower pressure,

possibly because of the increase in Ck. Near and just

inside theRMW, there is a dipole pattern in the pressure

correlation such that larger a leads to a steeper radial

SLP gradient and deeper central pressure; this is in

agreement with recent findings [cf. Fig. 6 in Green and

Zhang (2013)]. There is also a notable temporal varia-

tion in the correlation between a and SLP: in the first

few hours of model integration, increasing a yields

higher pressure at the TC center, which suggests that the

impact of CD on central pressure is a not a direct effect

but rather a consequence of the changed vortex struc-

ture (i.e., size of RMW) and the degree of high-enthalpy

inflow from the far field. Figure 5 is identical to Fig. 4

except that correlations with b are shown instead. Not

surprisingly, an increase in b (increase in Ck) leads to

lower SLP throughout the entire TC (rather than just

inside the RMW). Additionally, an increase in Ck is

strongly correlated with an increase in 10-m wind speed

at the RMW (with a weaker, but still statistically sig-

nificant, correlation at farther distances). The lack of

a dipole pattern means that b (and thus Ck) does not

impact TC structure in the same way as CD. There is

some temporal dependence on the correlations with b,

most likely because the TC increases in size over time.

The effects of the parameters (viz., a and b) on TC

structure can also be examined via radius–height plots of

correlations with azimuthally averaged tangential and

radial winds and equivalent potential temperature ue.

Such plots are shown in Figs. 6–8 for multiparameter

simulations initialized at 0000 UTC 27 August and valid

1, 24, and 48 h later, respectively. After just 1 h (Fig. 6),

there are two coherent correlation features: one is be-

tween a and low-level wind such that increasing a (and

thus CD) yields more surface friction, which as expected

slows the tangential winds (Fig. 6a) and strengthens the

FIG. 3. (a) Time series plots of correlation coefficients betweenmodel parameters (a in blue,Vc in red,m in orange,

and b in green) and minimum SLP for multiparameter experiments initialized at 0000 UTC 26 Aug 2005. (b) As

in (a), but for correlations between model parameters and maximum 10-m wind speed. (c),(d) As in (a),(b), but

for simulations initialized at 0000 UTC 27 Aug 2005. Correlation values of 60.22 are marked to denote the 95%

level for statistical significance; the zero correlation line is also drawn. Hourly output is restricted to times before

2000 UTC 29 Aug 2005 to remove the effects of landfall.
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low-level inflow (Fig. 6c). The second coherent feature

is the positive correlation near the surface between ue
and both parameters (Figs. 6e,f), which is to be expected

because increases to a and b yield increased Ck (the

former through an increase in CD) and thus increased

surface fluxes of sensible and latent heat. Unsurpris-

ingly, these results suggest that estimating parameters

associated with CD and Ck would best be accomplished

with observations as close to the surface as possible. At

24 and 48 h (Figs. 7 and 8), the correlation structures

FIG. 4. (a) Correlations (color shading) between model parameter a and azimuthally averaged SLP as functions

of distance from TC center and hours after 0000 UTC 26 Aug 2005 for multiparameter simulations initialized

at 0000 UTC 26 Aug 2005. (b) As in (a), but for correlations between a and azimuthally averaged 10-m wind speed.

(c),(d) As in (a),(b), but for simulations initialized at 0000 UTC 27 Aug 2005. The thin dashed lines denote the

contour of zero correlation; the heavy black lines denote the ensemble mean (over all 80 simulations) azimuthally

averaged 10-m wind speed.

FIG. 5. As in Fig. 4, but for correlations with model parameter b.
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become considerably smoother, which allows for in-

sights into physical/structural processes in a more com-

prehensive manner than Green and Zhang (2013, cf.

their Fig. 7). Above the low-level inflow layer (where

increasing a yields stronger inflow at the expense of the

tangential wind and a smaller radius of maximum

winds), increased a results in a tighter vortex (mainly

inside ;175 km) and stronger upper-level outflow. The

correlations with b are consistent with the idea that this

parameter governs TCs in a much simpler way: in-

creasing b (increasing Ck) yields a more intense vortex,

with faster tangential winds throughout the free atmo-

sphere, a stronger secondary circulation, and an across-

the-board increase in ue; the radius of maximum winds

does not shift. Furthermore, the eyewall is the only re-

gion where the strong correlation between tangential

wind (which is much larger than the radial wind) and

b reaches into the boundary layer down toward the

surface; this explains the weaker correlations beyond

;75 km fromTC center between b and 10-mwind speed

shown in Fig. 5.

It is worth noting that there are apparent downward

and outward phase propagations of correlation bands

with alternating sign for both parameters in the wind

fields and in ue (in particular during the first 24 h, not

shown). These bands are likely induced by inertial

gravity waves radiating away from the eyewall/outflow

regions as an adjustment and reflection of TC intensity

changes under different air–sea fluxes. The detailed

understanding of such processes is beyond the scope of

the current study.

c. Three-dimensional sensitivity

It is also worthwhile to examine correlations between

model parameters and state variables without azimuthal

averaging, because neither TCs nor their observations

FIG. 6. Radius–height plots for multiparameter experiments initialized at 0000 UTC 27 Aug 2005, valid at

0100 UTC 27 Aug 2005. (a) Correlation coefficients (color shading) between a and azimuthally averaged tangential

wind. (b) As in (a), but for correlations between b and tangential wind. (c),(d) As in (a),(b), but for correlations with

radial wind (positive values denote inflow). (e),(f) As in (a),(b), but for correlations with equivalent potential

temperature. The wind field averaged over all 80 simulations is shown in each plot, with solid gray contours denoting

tangential wind (every 10m s21), and heavy solid (dashed) black contours denoting radial inflow (outflow) every

3m s21. The thin dashed lines denote the contour of zero correlation.

2298 MONTHLY WEATHER REV IEW VOLUME 142



are axisymmetric. In doing so, we focus on the lowest

model level (with a height of ;35m) as a proxy for the

surface because near-surface observations are likely to

be the most beneficial for parameter estimation. Figures

9 and 10 show multiparameter experiment correlations

between (a, b) and lowest model level wind speed after

1 and 12 h of model integration, respectively. These

correlations are shown in an Earth-relative framework,

which is often used for data assimilation in real cases.

There are statistically significant correlations (indicating

parameter distinguishability) between a and wind speed

throughout the shown portion of D03 after just 1 h of

integration (Fig. 9), which is to be expected by the def-

inition of a. Over almost the entire shown part of the

domain, increasing a (and thus CD) yields lower near-

surface winds over the ocean. On the other hand, there

are no large areas of statistically significant correlations

with b—in fact, most of the statistically significant cor-

relations are over land—demonstrating that near-

surface wind speed observations may not be able to

help estimate this parameter with extremely short-term

model integration and data assimilation. Looking to

12 h after model initialization (Fig. 10), which is on the

order of the time needed to spin up covariance struc-

tures in an ensemble data assimilation system, there

are areas of statistically significant correlations for both

parameters. Such a result suggests that while near-

surface wind speed observations, especially near the

TC center, can always be helpful in estimating a, a lon-

ger spinup time may be needed for such observations to

have an impact on b (consistent with the findings from

azimuthally averaged fields). It should also be noted that

after 12 h of integration, the impact of a on the vortex

structure is already apparent (especially for the simu-

lations initialized at 0000 UTC 27 August; Fig. 10b):

increasing a increases the wind close to the vortex center

and decreases the wind at larger radii, a pattern that is

consistent with a decrease in the radius of maximum

wind (see, e.g., Fig. 5a of Smith et al. 2013).

Asymmetric correlations at later times may be able

to provide additional insights into physical processes,

although these correlations must be shown in a vortex-

centered framework to remove the effects of differ-

ent forward motion vectors. By 25 h after model

initialization (Fig. 11), correlations between a and low-

est model level wind speed are mostly dominated by the

FIG. 7. As in Fig. 6, but valid at 0000 UTC 28 Aug 2005.
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wavenumber-0 structure and consistent with the azi-

muthally averaged results (e.g., Figs. 4, 5, and 7), with

increasing a (increasing CD) shrinking the near-surface

RMW and weakening winds beyond the RMW. The

only deviation from this pattern is a consequence of

landmasses (Florida and Cuba, especially in Fig. 11a).

Correlations with b, however, exhibit substantial azi-

muthal and radial variability that cannot be attributed

to nearby land; this is true even for winds close to air-

borne Doppler flight level (;2 km, not shown). It is

possible that the asymmetries are a consequence of b

only affecting winds near the eyewall, but this is purely

speculation.

Finally, parameters to be estimated must yield suffi-

ciently large spread in the state variables, whichNielsen-

Gammon et al. (2010) call observability. It should be

noted that the temporal evolution of standard deviation

depends greatly on the atmospheric state: standard de-

viations will grow monotonically in environments that

are sensitive to the initial conditions (such as an in-

tensifying TC), but not necessarily so in environments

that are highly forced by boundary conditions (such as

the diurnal cycle under large-scale quiescent conditions).

Figure 12 shows the standard deviation of the lowest

model level wind speed for single-parameter experi-

ments6 after a single hour of model integration. Several

important points are evident from this figure. First,

standard deviations for both parameters are an order

of magnitude larger for the later start time (0000 UTC

27 August; Figs. 12b,d), presumably because the stron-

ger TCs at this later time result in more significant

changes to the exchange coefficients (note that the

spread ofCD andCk increases with wind speed in Fig. 1).

Second, the standard deviations associated with a are

more than an order of magnitude larger than those for

b (and for Vc and m, not shown). Third, the standard

deviations exhibit substantial spatial variability, such

that the largest standard deviations are collocated with

the fastest winds. While this is to be expected (small

changes in position or TC size could yield large dif-

ferences in wind speed at a fixed point on Earth), there

are major implications for TC prediction. From the

FIG. 8. As in Fig. 6, but valid at 0000 UTC 29 Aug 2005.

6 The standard deviations from multiparameter experiments

cannot be separated into contributions from individual parameters.
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standpoint of observability (large standard deviations),

the observations most suitable for use in parameter es-

timationwould be taken near the TC center and over the

open ocean, which is in line with the current practice for

airborne reconnaissance. In terms of TC predictability,

it is crucial to accurately resolve the structure of the

inner vortex because that is the location of the largest

(and thus fastest growing) errors.

4. Discussion

Any case study will raise questions about the robust-

ness of the results. Perhaps one of the most obvious

questions is whether or not the findings translate well to

other TCs. Obviously, the best way to answer this

question would be to run an additional 3201 high-

resolution simulations but for a completely different

TC; computational and data storage constraints make

this unfeasible. A related concern is that the parameter

space for the multiparameter experiments is quite un-

dersampled, in terms of both the fraction of parameter

combinations selected (80/160 000 5 0.05%) and the

method used to sample the parameter space [a Latin

Hypercube could have been used instead of or in addi-

tion to the uniform random distribution employed here,

see chapter 2 of Saltelli et al. (2008) for an excellent

overview]. Nevertheless, our results are consistent with

previously published studies. For instance, both Bao

FIG. 9. Earth-centered output (coastlines in gray) frommultiparameter experiments valid 1 h after initialization at

(left) 0000 UTC 26 Aug and (right) 0000 UTC 27 Aug 2005. Lowest model level (;35m above ground level) wind

speed averaged over all multiparameter experiments is contoured every 5m s21 (heavy contours denote 30 and

60m s21 isotachs). Red (blue) shading indicates positive (negative) statistically significant correlations (at the 95%

level) between lowest model level wind speed and model parameters (a),(b) a and (c),(d) b. Axis labels denote

distance in km from a fixed point close to the average TC center.
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et al. (2012) and Green and Zhang (2013) found that CD

impacts the pressure–wind relationship of the TC; in

fact, Green and Zhang (2013) showed this result to hold

across several different cases (cf. their Fig. 9). These two

studies also found CD to affect TC structure, including

the radius of maximum winds.

The identification of model parameters suitable for

estimation also has support from previous work. Spe-

cifically, Sraj et al. (2013) used Bayesian inference

to estimate a, Vc, and m for a simulation of Typhoon

Fanapi (2010).7 Their method was quite confident (al-

though not necessarily accurate) in its estimate ofa, with

a small-variance Gaussian posterior distribution; the

estimate of m, however, had a nearly uniform posterior

distribution, indicating low confidence. Although Sraj

et al. (2013) used a different estimation method than

what is planned for our future work, the fact that a

seems to be a good parameter to estimate is consistent

with the present results. Interestingly, their estimate of

Vc was of reasonable confidence, which is in disagree-

ment with our parameter sensitivity experiments (a

more comprehensive discussion is beyond the scope of

this paper). Regarding m, Sraj et al. (2013) note that

their observational dataset did not include locations at

which wind speeds rose above Vc (i.e., wind speeds for

which m would matter); consequently, their algorithm

was unable to provide an improved estimate of m. This

problem underscores one of the reasons why we believe

that m, while important for TC dynamics, is not a suit-

able parameter to estimate: m only matters for very

strong winds (hurricane force, or above Vc) that are al-

most always confined to a small area or, in the case of

FIG. 10. As in Fig. 9, but valid 12 h after initialization.

7Note that in Sraj et al. (2013), Vc is called Vmax and the upper

bound for m is 0.
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weaker TCs, nonexistent. Thus, the covariance matrix

used to update m usually would be sparse and likely

contain weak and/or spurious correlations. In contrast,

a parameter such as a (with a covariance matrix built

off a larger sample size) can be estimated regardless of

TC intensity.

Readers may be curious as to why the simulations of

Katrina were not compared with the best-track obser-

vations, and why the set of model parameters producing

the best forecast was not identified. The answer is

straightforward: the purpose of this manuscript is not to

identify parameter values that lead to the best forecast;

rather, we seek to identify the parameters most suitable

for estimation via EnKF. In fact, using parameter sen-

sitivity to identify optimal parameter values is quite

undesirable for several reasons. One, such ‘‘manual tun-

ing’’ is extremely tedious and computationally expensive.

Two, the parameter set that produces the best forecast

is almost certainly situation dependent, so manual tun-

ing would result in either okay (but not great) forecasts

of all TCs or in terrible forecasts for some TCs. Three,

manual tuning cannot take advantage of real-time ob-

servational data. The EnKF-based parameter estimation,

which will be employed in future work, does not have

these disadvantages.

So which parameters aremost suitable for estimation?

In other words, which parameters are simple, observ-

able, and distinguishable based on our sensitivity ex-

periments? As previously noted, simple parameters

have ideally linear relationships with state variables.

Looking at Figs. 2 and 3, the only parameter that does

not exhibit some evidence of simplicity is Vc (no color

stratification in Fig. 2 and no statistically significant

correlations in Fig. 3). Observability can be identified

FIG. 11. As in Figs. 9 and 10, but valid 25 h after initialization and in a vortex-centered framework (axis labels denote

distance in km from the average TC center).
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through the magnitude of state variable standard de-

viations from single-parameter experiments. Looking at

Fig. 12, a is more observable than b; furthermore, the

standard deviations associated with m are only compa-

rable in magnitude to a and b for extremely intense TCs

(wind speeds above 60m s21, not shown). Also taking

into consideration the other problems associated withm

(as discussed earlier in this section), it is our contention

that m is not suitable for parameter estimation except

for very intense storms with abundant observations. The

other question is whether a and b are distinguishable

from each other. According to Nielsen-Gammon et al.

(2010), distinguishable parameters have different cor-

relation structures (i.e., parameters with the same cor-

relation structure are not distinguishable). Even though

both a and b can change Ck (Fig. 1), we contend that

these two parameters are in fact distinguishable. Plots of

the time–radius evolution of correlations between the

parameters and surface latent heat flux (Fig. 13) are

consistent with the results shown above (cf. Figs. 4 and

Figs. 5, 6–11): a and b have distinguishable impacts on

the kinematic and thermodynamic structures of the

simulated TCs. The key difference between these two

parameters is that a (through CD) affects the pressure–

wind relationship, whereas b does not (Figs. 2 and 3).

5. Conclusions

NWP models continue to struggle to accurately fore-

cast TC intensity because many of the important phys-

ical processes are parameterized (i.e., they cannot be

explicitly resolved by the model). In particular, there is

substantial evidence (from theory, observations, and

numerical simulations) that fluxes of momentum and

moist enthalpy across the air–sea interface have a tre-

mendous effect on TC intensity; unfortunately, air–sea

fluxes are extremely difficult to parameterize and thus

are likely a significant source of model error. Although

the best way to treat model error is still an open research

question, an important first step is to be able to quantify

FIG. 12. As in Fig. 9, but for standard deviation of lowest model level wind speed (m s21, shaded) for single-parameter

experiments.
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the effects of model parameters on the forecasted state

of the system (i.e., the characteristics of a numerically

simulated TC).

This study used ARW-WRF to examine the impacts

of four model parameters (three associated with surface

drag and one associated with moist enthalpy flux) on

simulations of Hurricane Katrina (2005). As expected,

surface fluxes had a significant influence on TC intensity

and structure. The most straightforward result was that

an increase in Ck (the exchange coefficient for moist

enthalpy) yielded a more intense TC in terms of both

minimum SLP and maximum 10-m wind speed. The

finding that Ck does not change the pressure–wind re-

lationship is in agreement with the much less systematic

study of Green and Zhang (2013).

This study shows conclusively what was previously

noted by Bao et al. (2012) and Green and Zhang (2013):

both the pressure–wind relationship and the structure

of a TC are affected by changes to CD (the surface drag

coefficient). A somewhat unexpected result is that

changes to CD over all wind speeds (as opposed to high

wind speeds only) had the most profound impact on

the simulated TCs, with higherCD yielding substantially

lower minimum SLP (indicative of a stronger storm).

A possible explanation for this counterintuitive result is

as follows. First, Ck is parameterized to be a function of

CD [cf. (6) and (7)]; therefore, an increase in CD means

an increase inCk. A direct consequence of an increase in

Ck is an increase in the moist enthalpy transferred from

the ocean to the overlying air; obviously, more moist

enthalpy will result in a deeper TC. By increasing CD

(and thus Ck) at low wind speeds, there is additional

moist enthalpy in the far field (i.e., well away from the

center) that can be advected inward toward the eyewall.

This explanation is supported by the fact that whenCD is

only allowed to vary at high wind speeds (i.e., in areas

close to the eyewall), there is no significant change in

minimum SLP. But increased drag will weaken winds

farther away from gradient-wind balance, allowing low-

level inflow to get closer to TC center (Smith et al. 2013);

in other words, increased drag leads to a smaller radius

of maximum winds (e.g., Bao et al. 2012; Green and

Zhang 2013; Smith et al. 2013).

Additionally, it may be possible to use data assimila-

tion methods to estimate some (but not all) of the model

parameters that were tested. The parameters that are

most suitable for estimation are a and b, which control

the magnitudes of CD and Ck, respectively, for all wind

speeds. Surface wind observations (such as from the

Stepped Frequency Microwave Radiometer) and near-

surface temperature/moisture data would be most de-

sirable for parameter estimation. The actual parameter

estimation experiments are left to a future study.

The functional forms of the equations for CD and Ck

are undoubtedly simplistic (and almost certainly in-

correct) because factors such as sea state and radial/

azimuthal location with respect to the TC center (e.g.,

Holthuijsen et al. 2012) are ignored. Broadly speaking,

all parameterizations are inherently limited in accuracy

because they attempt to represent processes that cannot

be explicitly resolved. Nevertheless, sensitivity studies

can still provide insight as to how dynamical systems

such as TCs respond to parameterized processes and the

associated uncertainties (e.g., Emanuel 1986; Bao et al.

2012; Bryan 2012; Smith et al. 2013). Because physical

parameterizations are a necessity for NWP, a thorough

understanding of their errors and uncertainties can

allow for improvements to the forecast—either by

changing the parameterization [e.g., Green and Zhang

(2013), particularly their Fig. 9] or by incorporating

parameter estimation (e.g., Sraj et al. 2013). These ap-

proaches by no means replace the need for more phys-

ically realistic parameterization schemes developed

through theoretical, explicit (resolved)modeling, and/or

observational studies.

Finally, it is necessary to point out that the present

results are based on an atmospheric model that is not

coupled with ocean8 andwavemodels. This is particularly

FIG. 13. Hovm€oller correlation plots as in Figs. 4 and 5, but for

multiparameter simulations initialized at 0000 UTC 27 Aug 2005.

(a) Correlations between a and latent heat flux. (b) Correlations

between b and latent heat flux.

8We have done some preliminary tests using a single-column

oceanmixingmodel (Pollard et al. 1972), but the results are beyond

the scope of the present paper.
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important here because the parameters in question are

related to fluxes across the air–sea interface; these fluxes

are directly used to couple atmosphere, wave, and ocean

models to one another. Therefore, it is likely that the

parameter sensitivities (and estimated parameter

values) would change with additional parameters, an

improved parameterization scheme, and/or a fully cou-

pled model.
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APPENDIX A

Atmospheric Surface Layer

a. Fluxes

The fluxes of momentum t, sensible heatH, and latent

heat E across the atmospheric surface layer are

t52ru2*52rCD(DU)2 52rCDU
2 , (A1)

H52rcpu*u*52(rcp)CHUDu, and (A2)

E52rLyu*q*52(rLy)CQUDq , (A3)

where r is the density of air; u* is the friction velocity; u*
and q* are the surface layer temperature and moisture

scales, respectively; D(U, u, q) are the respective dif-

ferences in wind speed, temperature, and water vapor

between a reference height zref (often 10m) and the

bottomof the surface layer (note thatU5 0 at the bottom

of the surface layer); cp is the specific heat capacity of air;

Ly is the enthalpy of vaporization; and CD, CH, and CQ

are the respective bulk exchange coefficients for drag,

sensible heat, and latent heat, respectively.

Monin–Obukhov similarity theory may be used to

calculate u*, u*, and q*:

u*5
kU

ln
zref
z0

� �
2cm

zref
L0

� � , (A4)

u*5
kDu

ln
zref
z0

� �
1 ln

z0
zT

� �
2ch

zref
L0

� �, and (A5)

q*5
kDq

ln
zref
z0

� �
1 ln

�
z0
zQ

�
2ch

zref
L0

� � , (A6)

where k is the von K�arm�an constant; z0, zT, and zQ are

the roughness lengths for momentum, sensible heat, and

water vapor (latent heat), respectively; cm and ch are

the stability correction functions for momentum and

heat, respectively; andL0 5 u2*u0(kgu*)
21, where g is the

acceleration due to gravity and u0 is the base-state

temperature. In neutral stability,

cm

zref
L0

� �
5ch

zref
L0

� �
5 0. (A7)

Observations suggest a neutrally stable surface layer

within the TC eyewall (e.g., Powell et al. 2003). There-

fore, we can use (A7) in (A4)–(A6) to get

u*5
kU

ln
zref
z0

� � , (A8)

u*5
kDu

ln
zref
z0

� �
1 ln

z0
zT

� �5
kDu

ln
zref
zT

� �, and (A9)

q*5
kDq

ln
zref
z0

� �
1 ln

�
z0
zQ

�5
kDq

ln

�
zref
zQ

� . (A10)

b. Exchange coefficients

We can combine (A1)–(A3) with (A8)–(A10) to find

expressions for the bulk exchange coefficients (assuming

neutral stability, as denoted by the subscript N):

CD,N 5
k2

ln
zref
z0

� �� �2 , (A11)
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CH,N 5
k2

ln
zref
z0

� �
3 ln

zref
zT

� �5
C1/2
D,Nk

ln
zref
zT

� �, and

(A12)

CQ,N 5
k2

ln
zref
z0

� �
3 ln

�
zref
zQ

�5
C1/2
D,Nk

ln

�
zref
zQ

� . (A13)

APPENDIX B

Potential Intensity Theory

Complete formulas

As stated in section 2, the nondimensional forms of

the potential intensity theory equations for Vmax and

Pmin are given by Emanuel (1995a,b) as follows:

V2
max5

Ck

CD

12 0:25r20

12
g

2

Ck

CD

0
BBB@

1
CCCA and (B1)

Pmin’2
V2
max(12 0:5AH)2 0:25r20

12AH
, (B2)

with

g[A

�
12H

12AH

�
and (B3)

A[
Ts 2To

Ts

1
xs

RdTs(12H)
, (B4)

where Ck and CD are the surface exchange coefficients

of moist enthalpy and drag (momentum), respectively;

r0 is the (normalized) outer radius of the TC at which the

surface wind vanishes; H is the ambient relative hu-

midity; Ts and To are the surface and outflow tempera-

tures, respectively; xs is the background entropy deficit

(with respect to the ocean) of the subcloud layer; andRd

is the gas constant for dry air.
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