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ABSTRACT

The ensemble predictability of the January 2015 and 2016 East Coast winter storms is assessed, with model

precipitation forecasts verified against observational datasets. Skill scores and reliability diagrams indicate

that the large ensemble spread produced by operational forecasts was warranted given the actual forecast

errors imposed by practical predictability limits. For the 2015 storm, uncertainties along the western edge’s

sharp precipitation gradient are linked to position errors of the coastal low, which are traced to the positioning

of the preceding 500-hPa wave pattern using the ensemble sensitivity technique. Predictability horizon dia-

grams indicate the forecast lead time in terms of initial detection, emergence of a signal, and convergence of

solutions for an event. For the 2016 storm, the synoptic setup was detected at least 6 days in advance by global

ensembles, whereas the predictability of mesoscale features is limited to hours. Convection-permitting WRF

ensemble forecasts downscaled from the GEFS resolve mesoscale snowbands and demonstrate sensitivity to

synoptic and mesoscale ensemble perturbations, as evidenced by changes in location and timing. Several

perturbation techniques are compared, with stochastic techniques [the stochastic kinetic energy backscatter

scheme (SKEBS) and stochastically perturbed parameterization tendency (SPPT)] and multiphysics con-

figurations improving performance of both the ensemblemean and spread over the baseline initial conditions/

boundary conditions (IC/BC) perturbation run. This study demonstrates the importance of ensembles and

convective-allowing models for forecasting and decision support for east coast winter storms.

1. Introduction

The east coast winter storms (ECWSs; Hirsch et al.

2001) of 26–27 January 2015 and 22–24 January 2016

delivered substantial impacts to the mid-Atlantic and

northeastern United States. According to the Northeast

Snowfall Impact Scale [NESIS; a regional snowfall index

that ranks snowstorms as a function of area affected by

the storm, the amount of snow, and the population living

in the area impacted by the storm; Kocin and Uccellini

(2004a)] the 25–28 January 2015 storm was ranked cate-

gory 2 ‘‘significant,’’ whereas the 22–24 January 2016

ranks fourth on the list with a category 4 ‘‘crippling’’

description. Notable were the forecast challenges, par-

ticularly near tight precipitation gradients at the northern

and western edges of the storm where large ensemble

spread occurred. In 2015, deterministic guidance in-

dicated more than 2 ft of snow for New York City, New

York, leading to its shutdown. A public outcry ensued

when only 24.9 cm (9.8 in.) fell at Central Park, despite

63.2 cm (24.9 in.) occurring just 60km to the east at Islip,

NewYork, on Long Island, and 62.0 cm (24.4 in.) burying

Boston, Massachusetts. Examination of operational en-

semble forecasts [e.g., the Global Ensemble Forecast

System (GEFS)], however, indicated a confident forecast

forBoston, but large uncertainty in precipitation amounts

for New York City. In 2016, ensembles confidently

indicated a significant precipitation event in the Wash-

ington, D.C., metro area more than 4 days in advance, a

forecast that successfully verified. However, until 24h

before the storm New York City appeared to be south of

the main snow area, yet it received a record 69.9 cm

(27.5 in.) at Central Park.
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While considerable progress has been made in iden-

tifying the patterns associated with (Miller 1946; Kocin

and Uccellini 2004b; Root et al. 2007), understanding

physical mechanisms responsible for (Sanders and

Bosart 1985; Brennan and Lackmann 2005; Zhang et al.

2007; Ganetis and Colle 2015; Kumjian and Lombardo

2017), and modeling and predicting ECWSs (Evans and

Jurewicz 2009; Novak et al. 2006, 2008), their practical

predictability remains limited (Charles andColle 2009a,b).

Practical predictability is described as the ability to predict

based on the procedures (e.g., observations, models, and

assimilation systems) currently available (Melhauser and

Zhang 2012). A particular challenge of these storms is the

mesoscale nature of snowfall patterns, including banding

structures that can result in snowfall rates of up to 7cmh21

on scales of tens of kilometers (Nicosia and Grumm 1999;

Novak and Colle 2012). These are not adequately re-

solved in operational ensemble prediction systems,

but require convection-permitting numerical weather

prediction (NWP).

Lorenz (1963) demonstrated deterministic chaos:

a sensitive dependence on initial conditions, where the

present determines the future, but the approximate

present does not approximately determine the future (as

he later describes). Even with a perfect model, initial

condition errors grow with time, resulting in intrinsic

limits to predictability; imperfect models, observations,

and assimilation schemes result in further limitations to

the practical predictability of meteorological phenom-

ena. Zhang et al. (2002) explored such predictability

issues for the 2000 ‘‘surprise’’ snowstorm; errors can

propagate upscale from convection, through gravity

waves, and onto baroclinic instabilities (Zhang et al.

2007). Ensemble forecasting systems (Tracton and

Kalnay 1993) are designed to address chaos by sampling

plausible initial conditions (given observation and

forecast uncertainties) and demonstrating an envelope

of potential solutions. Today, ensemble generation is

linked to the techniques of ensemble (Evensen 1994)

and hybrid (Wang et al. 2013) data assimilation, with the

goal of creating an ensemble with a calibrated spread

that adequately describes forecast confidence. This is

particularly important for quantitative precipitation

forecasts (QPFs) for ECWSs, where decision-makers

need to assess risk and take action (Novak et al. 2014).

Probabilistic precipitation forecasts from ensemble

prediction systems are of limited value without un-

derstanding of their reliability. Siddique et al. (2015)

demonstrated that a 100% probability forecast of pre-

cipitation from the raw ensemble (i.e., all members

forecast precipitation exceeding a given threshold)

verifies less than 70% of the time for precipitation in the

mid-Atlantic region. Overall, ensemble forecasts for

precipitation exhibit biases and tend to be under-

dispersive (Romine et al. 2014). Various techniques for

assessing and correcting such deficiencies have been

developed for coarser-resolution models (e.g., Raftery

et al. 2005; Scheuerer andHamill 2015), but have not yet

been applied to convection-permitting ensembles whose

performance characteristics may differ.

This paper assesses the performance of ensemble

forecasts for the 25–28 January 2015 and 22–24 January

2016 winter storms using both operational ensemble

forecasting systems and convection-permitting Weather

Research and Forecasting (WRF) Model ensembles.

The study explores the impact of initial conditions and

ensemble design (i.e., modeling system, resolution, sto-

chastic and physical perturbation method) on the prac-

tical predictability of these storms. Of particular interest

is the link between the synoptic-scale evolution of the

storm and precipitation patterns exhibited among en-

semble members (explored using ensemble sensitivity

techniques), time scales of predictability (displayed

using a novel predictability horizon diagram), and an

evaluation of the performance of the ensemble distri-

butions (mean/median and spread) for precipitation.

Section 2 describes these models and the precipitation

datasets for comparison. Section 3 discusses the results

in terms of ensemble skill scores, predictability horizons,

sources of forecast uncertainty, and ensemble system

design, and section 4 provides the conclusions.

2. Data and methods

a. Operational ensemble models

As of 2016, the National Centers for Environmental

Prediction (NCEP) operates two primary ensemble

forecast systems for weather prediction: the Global

Ensemble Forecast System (GEFS), and the Short-

Range Ensemble Forecast (SREF). The GEFS is a

21-member ensemble based upon the Global Forecast

System (GFS) model. In winter 2015, the operational

deterministic resolution was T574 (;25km), and the

ensembles were run at T254 (;55km). By winter 2016,

this had been increased to TL1534 (;13km), with the

ensembles at TL574 (;33 km). The GEFS uses initial

condition diversity through ensemble transformation

with rescaling (Wei et al. 2008) for 2015, and then

hybrid–ensemble data assimilation (EnDA) perturba-

tions in 2016 with a single dynamical core and set of

physics packages. To enhance ensemble spread during

the forecast phase, stochastic total tendency perturba-

tions (STTPs) are used, which perturb the total model

state tendency every 6h using a random perturbation.

During the winter of 2015, the Short-Range Ensemble

Forecasts (Stensrud et al. 2000) system featured 21
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members at ;16km horizontal resolution. Members

were evenly divided (seven each) among the Non-

hydrostatic Mesoscale Model (NMM), NMM-B, and

Advanced Research version ofWRF (ARW) dynamical

cores. Initial conditions were created using three pairs of

positive and negative perturbations generated by the

bred vector technique (Toth and Kalnay 1993). By

winter 2016, the SREF underwent a significant upgrade,

with 26 members evenly divided among the NMM-B

and ARW dynamical cores. The new SREF also in-

cludes diversity in initial conditions and model physics

options (Du et al. 2015).

b. Convection-permitting WRF ensemble simulations

The need for a convection-permitting ensemble sys-

tem has been identified as an important strategic priority

by the UCARModel Advisory Committee (UMAC) in

their recent review of the NCEP production suite (Carr

and Rood 2015), which involved stakeholders across the

weather enterprise including the operational, research,

and private-sector communities. Running models at

convective scales (generally less than 4km) removes the

need for a convective parameterization, and allows for a

more realistic depiction of vertical motion, cloud and

precipitation features, and interaction of flow with

topography. Currently, a 4-km North American Meso-

scale Forecast System (NAM) nest and 3-km High-

Resolution Rapid Refresh (HRRR; Benjamin et al.

2016) provide the state of the art for operational pre-

diction at convective scales in the United States.

However, a single deterministic run does not provide an

indication of forecast confidence and, therefore, may be

misleading in regard to which features can be relied

upon, and what details are beyond the limit of pre-

dictability. Previous ensemble studies at convection-

permitting resolutions for specific events have focused

primarily on severe weather over the Great Plains (e.g.,

Stensrud et al. 2009) and tropical cyclones (e.g., Zhang

et al. 2009). The National Center for Atmospheric Re-

search (NCAR) WRF Data Assimilation Research

Testbed (WRF-DART) ensemble and its website

(Schwartz et al. 2015; http://ensemble.ucar.edu/), which

started running in April 2015 in near–real time over the

CONUS at 3 km once a day at 0000 UTC, are excellent

resources for forecasters and researchers; however,

this system was not yet operational during the 2015

case. This ensemble continuously cycles (every 6 h) a

15-km WRF ensemble Kalman filter (EnKF) single-

physics ensemble of 50 members, then launches ten

3-km ensemble member forecasts at 0000 UTC each

day (Schwartz et al. 2015). Model physics include the

Thompson microphysics, Rapid Radiative Transfer

Model for GCMs (RRTMG) radiation, Noah land

surface model, and MYJ PBL schemes. For compari-

son, we include results from a special run of the NCAR

ensemble for the 2016 case here, where 30 members

were launched at 3-km resolution at 1200 UTC 22

January 2016.

The NSF-funded Big Weather web project (BWW;

Maltzahn et al. 2016) has developed a multiuniversity

ensemble system to test advances in cyberinfrastructure

to enable easier creation, reproducibility, sharing, and

analysis of large datasets. This ensemble employs a

CONUS domain with 20-km grid spacing (approxi-

mately the resolution of the operational ensembles), and

provides a WRF-based test bed for ensemble design. A

special run of the BWW ensemble created by the au-

thors uses 20 members with the 1200 UTC 22 January

2016 GEFS for initial and boundary conditions, and

WRF physics options selected by the BWW team (sim-

ilar to the NCAR ensemble, with the addition of the

Kain–Fritsch cumulus scheme).

A convection-permitting (3-km resolution) ensemble

forecast employing the WRF Model (Skamarock et al.

2008) was created by the authors by downscaling each

member of the GEFS. A triply nested domain was used

TABLE 1. Configurations of the ensemble model simulations used in this study. Note that the SREF uses several analyses for the initial

conditions (indicated by asterisks). SelectWRF experiments employ SKEBS, SPPT perturbations, both (STOC), ormultiphysics (PHYS).

Event Expt IC–BC Perturbations Physics Resolution (km)

2015 GEFS GDAS IC 1 STTP Single 55

2015 SREF GDAS* IC 1 multicore Multi 16

2016 GEFS GDAS IC 1 STTP Single 33

2016 SREF GDAS* IC 1 multicore Multi 16

2016 BWW GEFS IC only Single 20

2016 NCAR EnKF IC only Single 3

2016 WRF-GEFS GEFS IC only Single 3

2016 WRF 1 SKEB GFS SKEBS only Single 3

2016 WRF-GEFS 1 SKEB GEFS IC 1 SKEBS Single 3

2016 WRF-GEFS 1 SPPT GFES IC 1 SPPT Single 3

2016 WRF-GEFS 1 STOC GEFS IC 1 SKEBS 1 SPPT Single 3

2016 WRF-GEFS 1 PHYS GEFS IC only Multi 3
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for the 2015 case, with resolutions of 27 km (outer do-

main covering the entire eastern United States), 9 km

(middle domain covering the Carolinas to Maine), and

3km (inner domain covering Virginia to New Hamp-

shire’s southern border). For the 2016 case, only the

9- and 3-km domains were needed because of the in-

creased resolution of the NCEP models. WRF is initial-

ized with GEFS data at 27 vertical levels, but WRF is run

with 43 vertical levels. As eachWRFmember uses initial

conditions (ICs) and boundary conditions (BCs) from a

corresponding GEFS member, the GEFS data assimila-

tion system provides the initial ensemble perturbations

(ideally, toward the fastest-growing synoptic-scale insta-

bilities), as well as flow-dependent boundary condition

uncertainty to match the global model.

The baseline ensemble configuration was single core,

single physics by design (in contrast to the SREF), so that

the focus would be on initial condition uncertainties. The

physics configuration is the Thompson two-moment mi-

crophysics (Thompson et al. 2008), the RRTM longwave

(Mlawer et al. 1997) and Dudhia (1989) shortwave radi-

ation schemes, the Eta surface layer (Janjić 1996, 2002),

the Noah land surface model (Chen and Dudhia 2001),

the MYJ boundary layer scheme (Janjić 1994), and

Grell’s cumulus [at 9- and 27-km domains only; Grell and

Dévényi (2002)].
In special experiments corresponding to the 2016 case,

additional ensemble configurations were explored.

These made use of stochastic perturbations to model

forecasts, including the stochastic kinetic energy back-

scatter scheme (SKEBS; Shutts 2005; Berner et al. 2011)

and the stochastically perturbed parameterization ten-

dency (SPPT; Palmer et al. 2009; Berner et al. 2015).

Another configuration uses multiple combinations of

cloud microphysics and boundary layer schemes. Table

1 summarizes the configurations of these runs.

c. Observation datasets

Model forecasts are verified using several observa-

tion products. In this study, we have focused on the

verification of precipitation. Models do not necessarily

provide a conversion from liquid equivalent to snow

depth, and observations have demonstrated broad

variability in this ratio even within the same storm. For

example, for the 2015 storm Boston had a snow/liquid

ratio (SLR) of 23.2:1, whereas Central Park showed

11.7:1. We note difficulties with rain gauge data [such

as the Automated Surface Observing System (ASOS)],

including undermeasurement bias during windy con-

ditions (e.g., Doesken and Robinson 2009). We focus

on snow water equivalent (SWE) for QPF produced

by models as well as for observation products; the

challenges associated with SLR (e.g., Roebber et al.

2003; Baxter et al. 2005) do not need to be addressed

here.

Liquid equivalent precipitation from ASOS and Co-

operative Observer Program (COOP) stations provide

the best in situ measurements, but are somewhat limited

in spatial coverage. These can be enhanced by commu-

nity efforts such as CoCoRAHS; however, this network

does not enforce the collection of reports at a uniform

time of day. National Weather Service (NWS) public

information statements provide a valuable resource of

snowfall amounts measured by trained SKYWARN

spotters as well asmembers of the public, with fine spatial

resolution; however, liquid equivalents are not provided.

To resolve the detailed structure of snowfall accu-

mulation patterns, a spatially dense dataset is desired.

A mosaic of composite reflectivity radar imagery pro-

vides snapshots of the evolution of the storm structure,

and can be compared with model-simulated reflectivity

FIG. 1. Surface pressure analyses from the Climate Forecast

System Reanalysis (CFSR; hPa; black contours) and observed

composite radar reflectivity (dBZ; shaded) during the height of the

(top) Jan 2015 and (bottom) Jan 2016 snowstorms.
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(using the WRF version 3.7 forward operator, which

maps microphysical state variables to reflectivity). Raw

radar precipitation estimates are subject to known er-

rors and biases, due to limitations in elevation angle,

interference from topography, range folding, beam at-

tenuation, and precipitation-type uncertainties (Nelson

et al. 2016). The NCEP stage IV precipitation product

(Seo 1998) calibrates gridded, radar-estimated pre-

cipitation with surface stations, and provides a best-guess

observational product for use in this study.

3. Results

a. Synoptic overview of the snowstorms

The blizzard of 2015 was a significant east coast winter

storm (DeGaetano et al. 2002) that brought areas of

snow to portions of the mid-Atlantic region and the

northeastern United States. The heaviest snow fell over

eastern Long Island northward into eastern New En-

gland and southeastern Maine. The storm evolved as a

northern stream short-wave trough [clipper; e.g.,

Hutchinson (1995)] moved into the mid-Atlantic region

then off the east coast, providing favorable upper-level

vorticity advection (downstream of the trough) and di-

vergence (in the left-exit region of an upper-level jet

streak) patterns. This system merged with a southern

stream trough, which led to rapid cyclogenesis (e.g.,

Gaza and Bosart 1990), aided by diabatic heat release

from condensation. The resulting cyclone and radar

echoes are shown at 0600 UTC 27 January 2015

(Fig. 1a). A broad area of precipitation, mainly snow,

was present on the western side of the cyclone from

western Long Island northeastward into southeastern

Maine. Within the broader precipitation shield a more

intense mesoscale snowband was present over eastern

Long Island. This band shifted northward into south-

eastern New England between 0600 and 1200 UTC (not

shown). The sharp western gradient of heavy snow for

this storm was associated with the position of the at-

tendant coastal low pressure area.

Using the GEFS ensemble, the linkages between the

track of the coastal low, the western extent of pre-

cipitation, and the upper-air fields a few days prior are

demonstrated. In Fig. 2, the position for the surface low

in each ensemble member is indicated (the clustering

of positions is an artifact of the discrete, coarse nature

of the GEFS grid). A coastal low is a characteristic

‘‘fingerprint’’ of east coastwinter storms (Root et al. 2007).

The western edge of the 25.4-mm precipitation contour

is indicated with matching colors. Note the nearly direct

correspondence between the position of the low and the

westward extent of the heavy snow. The middle cluster

of ensemble members, which agrees with the actual

storm position, correctly places this threshold right

through New York City. Given the uncertainty in the

initial conditions at 1200 UTC 26 January, there would

be no way to determine a priori which solution would

verify. One can trace the track errors to uncertainties in

the upper-air pattern at model initialization times

FIG. 2. Locations of storm centers as estimated fromminimum sea level pressure fromGEFS

ensemble forecasts initialized at 1200 UTC 26 Jan 2015 and valid at 1200 UTC 27 Jan 2015.

Location ofminimumpressure from the verifyingNAManalysis is shown as a black star. Points

are colored according to their longitudinal distance from the analysis, with purple being farthest

west and red farthest east. Contours indicate thewesternmost extent of the 25.4-mm storm total

precipitation threshold, colored by its respective GEFS member.
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(Fig. 3). Ensemble sensitivity analyses (Bishop et al.

2001; Ancell and Hakim 2007; Torn and Hakim 2008;

Zheng et al. 2013; Ota et al. 2013) reveal the correlations

between ensemble perturbations of a scalar forecast

metric (here, track error) and a model field (here,

500-hPa heights). Here, track errors are defined as the

distances between low pressure centers in the GEFS

forecasts compared to the NAMverifying analysis in the

east–west direction (irrespective of latitude), with a

forecast location east of the observed location being a

positive number. A positive correlation between track

error and the 500-hPa height field (red colors) indicates

regions where higher heights encourage a track farther

out to sea, and lower heights encourage a track closer

to the coast. Therefore, a deeper (or slower) 500-hPa

trough overAlabama (atT2 24h) orKansas (atT2 48h)

may have brought the storm westward and with it

heavier snow to New York City. We further illustrate

the relationship between storm track and precipitation

in section 3b.

The blizzard of 2016 produced record to near-record

snows from the Washington, D.C., area to New York

City based on National Weather Service observations.

The heaviest snow was observed across northeastern

West Virginia and southwestern Pennsylvania north-

eastward to the New York metropolitan area. Snowfall

totals in the New York metropolitan area ranged from

59.4 cm (23.4 in.) at Islip to 69.9 cm (27.5 in.) in Central

Park, and 77.5 cm (30.5 in.) at John F. Kennedy In-

ternational Airport (JFK) inQueens County. Reports of

over 75 cmwere observed in southern Pennsylvania. The

blizzard of 2016 developed as a southern stream wave

moved up the east coast. Regions of snow initiated in the

strong easterly flow north of the deepening cyclone as it

moved across North Carolina and over the western At-

lantic. At 1200 UTC 23 January 2016 the cyclone was

FIG. 3. Ensemble sensitivity as demonstrated by correlations between GEFS track error

(storm position at verification time indicated as yellow dot; east 5 positive error, west 5
negative error) as correlated with time-lagged 500-hPa heights: (a) 24 h and (b) 48 h prior.
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east of the Delmarva region with a broad precipitation

shield extending from western Maryland to southern

New York State. Embedded within this region of snow

were several strong mesoscale bands of heavier snow.

By 1900 UTC (Fig. 1b), the cyclone shifted to the east

and the heavier snow shifted into northeastern Penn-

sylvania through southern New England.

b. Predictability horizons

Consider an idealized schematic for ensemble pre-

dictability horizons (Figs. 4 and 5 demonstrate actual

examples, which are elucidated later). The horizontal

axis represents the lead time prior to an extreme event,

which occurs at the far right of the figure. The vertical

axis denotes the ensemble forecasts of an important

event parameter (e.g., track of a low pressure area,

amount of snowfall, etc.) initialized at a particular time

relative to the event (x axis). All forecasts, however, are

valid at the same time (the event time). Therefore, the

diagram shows how forecasts evolve as the event ap-

proaches. The middle curve (in Fig. 5) is the ensemble

mean/median, whereas the bottom/top curves represent

the ensemble spread (one standard deviation, as in

Fig. 5), minimum/maximum, or percentiles and define

the envelope of potential solutions. The distance be-

tween the curves indicates the ensemble spread. The

first derivatives (slopes) of the curve indicate forecast

trends, whereas the second derivatives indicate forecast

jumpiness/consistency.

This type of diagram can illustrate key time scales that

define the predictability horizons for an event. At the far

left of the figure, probabilities for the extreme event are

expected to be near climatology. A first critical time

scale is identified when initial detection for the event

occurs: a few ensemble members indicate the possibility

for an extreme event, but the likelihood of the event, as

well as its specific details, remain unclear. There may be

considerable run-to-run inconsistencies at this stage. A

second critical time scale is when the emergence of a

signal occurs: a significant subset of the ensemble

(e.g., .50%) agrees that an extreme event may occur,

and therefore this signal is indicated in the ensemble

mean or median. However, the ensemble spread re-

mains large, indicating that several scenarios are still

plausible. A third critical time scale takes place when a

convergence of solutions occurs around a single out-

come. While alternative scenarios are still possible, they

are less likely to occur. The ensemble spread has become

FIG. 4. Predictability horizon diagram for liquid equivalent precipitation (mm) at (a) Boston

and (b) NYC. GEFS ensemble storm total precipitation forecasts ending at 1200 UTC 28 Jan

2015 are compared to storm track errors evaluated at 1200 UTC 27 Jan. Track error is defined

as the longitudinal distance of the storm center from the verifying NAM analysis, as shown in

Fig. 2. Negative values (red) indicate a westward displacement and positive (blue) eastward.

The horizontal axis indicates the time of forecast initialization. The dashed lines and stars on

the rightmost vertical axes indicate the observed liquid equivalent precipitation. Yellow dots

are ensemble mean values; other dots are individual ensemble member forecasts.
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small, and the forecast confidence subsequently becomes

high.

Figure 4 depicts a predictability horizon diagram for

precipitation in New York City and Boston for the

January 2015 storm. For Boston, initial detection of

the event has occurred by 0000 UTC 24 January 2015,

with emergence of a signal for significant snow by

1800 UTC 24 January. By 0000 UTC 26 January, the

ensemble is confident in.40mm of SWE, which verifies

(albeit on the lower end of the ensemble envelope). For

New York City, the initial detection and emergence of a

signal are delayed in time relative to Boston, and a

convergence of solutions never occurs. This indicates

that the uncertainty in the initial conditions and model

error do not allow storm track scenarios to be ruled out

even 12–24h prior to the storm. In this diagram, the

FIG. 5. Ensemble predictability horizon diagram for GEFS ensemble storm total pre-

cipitation forecasts ending at 1200UTC 25 Jan 2016 for (a)DC and (b) NYC. Blue dots indicate

individual GEFS ensemble member forecasts, the red line indicates the ensemble mean fore-

cast, and gray dashed lines indicate one standard deviation of the ensemble. The bottom

horizontal axis shows the forecast initialization date and time, while the top axis shows this time

as hours prior to the start of the event (distinct for each location). Predictability can be assessed

in three stages: initial detection, emergence of a signal, and convergence of solutions.
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ensemble member forecasts are colored by (east–west)

storm track error (see Fig. 2 for a visual depiction of low

pressure error locations). Errors in precipitation are

strongly correlated with the east–west displacement of

the storm: note that higher than average QPFs for New

York are nearly always accompanied by red dots (storm

tracking closer to the coast), whereas the ensemble

members that verify closest to the observations tend to

show little to no storm track error (white shading).

We also examine the predictability of the 22–24 Jan-

uary 2016 storm. Predictability horizons (Fig. 5) for the

Washington, D.C. (DC), area were long: more than

6 days for initial detection and 4 days for emergence of a

signal, with a convergence of solutions taking place

;36h prior to the onset of the event. The situation was

more complicated for New York; whereas initial de-

tection was also early, the ensemble never fully con-

verged on a solution. In this event, unlike the 2015 event,

the verifying observation was near the highest ensemble

member. Overall, this storm had a significantly longer

practical predictability horizon than the 2015 storm.

Figure 5 also shows several examples of a bimodal pre-

cipitation distribution, where the ensemble mean is

actually a not especially likely scenario.

Figure 6 depicts the evolution of probability maps for

25mm of precipitation as a function of GEFS forecast

initialization time. Initial detection of the possibility of

an extreme event occurred by 17 January, with greater

than 50% confidence for the DC area appearing by

18 January. By 1200 UTC 21 January, the forecast

reached 90% confidence for the DC metro area,

whereas the New York City area remained near 50%.

The northern and western gradients remained a con-

siderable forecast challenge.

These results illustrate that the question ‘‘how far in

advance was the storm predictable?’’ does not always

have a simple answer. Each aspect of the storm can be

traced through the stages of initial detection, emergence

of a signal, and convergence of solutions (if it occurs).

Synoptic-scale features of a storm have longer pre-

dictability horizons (e.g., the formation of an intense low

pressure area off the eastern seaboard), whereas details

(exact location of the low, locations of mesoscale

snowbands and the northwest edge of precipitation)

take longer to appear.

To be a useful source of forecast confidence, an en-

semble system must be reliable: over a significant num-

ber of cases, an event forecasted with X% probability

must occur approximately X% of the time. Reliability

diagrams are typically developed over many cases to

provide a large statistical sample. However, forecasters

may wish to know the conditional reliability of an

FIG. 6. Ensemble probability plots for 25-mm liquid equivalent. Forecasts are from the GEFS initialized at 1200 UTC (a) 17, (b) 18,

(c) 19, (d) 20, (e) 21, and (f) 22 Jan 2016. As the event approaches, the ensemble demonstrates higher confidence for significant pre-

cipitation, particularly in the DC metro area.
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ensemble for a specific weather regime: for example, if

an underforecast bias suddenly becomes an overforecast

bias for intense snowfalls. Therefore, we have created a

reliability diagram for ensemble probabilities of pre-

cipitation thresholds for the 2016 event (Fig. 7), gath-

ering samples spatially as well as temporally (for

different lead times, rather than independent events).

The GEFS is interpolated to COOP (GHCN) pre-

cipitation locations, resulting in a sample size of thou-

sands of points (inset). We note that the effective

degrees of freedom, however, are considerably smaller

as these points are not independent because of spatial

and temporal correlations. The 90% confidence in-

tervals for the observed probabilities were computed

FIG. 7. Reliability diagram illustrating the performance of the storm total precipitation forecasts from the GEFS

ensemble for the Jan 2016 event. Colored lines indicate the ensemble forecast probability compared to the observed

frequency for five precipitation thresholds (mm). The black solid line is the line of perfect reliability, while the

dashed line represents the line of ‘‘no skill’’ (as in Wilks 2011). Forecasts are compiled from six initializations of

GEFS prior to the start of the event, at approximately 0000 UTC 23 Jan. The 0.58 data are sampled. Observations

are taken from the U.S. Global Historical Climatology Network (GHCN) database. Inset shows the logarithm of

the number of observations in each probability bin.
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using the Jeffreys interval for binomial distributions

(Brown et al. 2001), shown for forecast probability

thresholds of 0.2, 0.5, and 0.8 in Fig. 7. For small thresh-

olds (2.5 and 12.6mm) there is an underforecasting bias;

for example, a 50% probability of precipitation actually

occurs 70% of the time. For larger thresholds (25.4 and

38mm), an overforecasting bias occurs, and the en-

semble is overconfident. For example, an ensemble

forecast of 25mm occurring in all members actually

verified only in 60% of cases. There is little skill in

the 50-mm predictions. The reliability of an ensemble

forecast can be improved through ensemble design

(perturbation methods, as discussed in section 3c) as

well as postprocessing methods.

c. Evaluating ensemble design

This section focuses on the impact of ensemble system

design (e.g., resolution, single–multiphysics, perturba-

tion method) on both forecast ensemble mean and

spread. Figure 8 depicts the observed storm total pre-

cipitation from stage IV estimates for the January 2016

ECWS. Observations indicate the most precipitation

occurred north and west of the DC metro area toward

the Appalachian Mountains, then extending just west of

the Interstate Highway 95 (I-95) corridor toward New

York City. There is a very tight precipitation gradient

through central Pennsylvania, with a distance of only

;50 km separating locations that received 45 cm of snow

from those reporting only a few centimeters.

Next, precipitation forecasts from the operational

GEFS, SREF, and several WRF ensemble systems are

FIG. 8. Stage IV precipitation estimate of 72-h storm total ac-

cumulated liquid equivalent precipitation (mm), beginning at

1200 UTC 22 Jan and ending at 1200 UTC 25 Jan 2016.

FIG. 9. Ensemble 50th percentile storm total liquid equivalent precipitation forecast by the (a) GEFS 1.08, (b), SREF, (c) NCAR 3-km

ensemble, (d) GEFS 0.58, (e) BWW ensemble, and (f) WRF 3 km downscaled from the GEFS. The 50th percentile indicates that at a grid

point, 50% of ensemble members forecast an amount less than or equal to the amount shown. Sizes of the squares indicate the resolution

of the product.
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compared. To encourage probabilistic rather than de-

terministic thinking, the ensemble 50th percentile (me-

dian; Fig. 9), 90th percentile (Fig. 10), and 10th

percentile (Fig. 11) are displayed. The coarse resolution

of 1.08 GEFS (panel a in Figs. 9–11) compared to 0.58
GEFS (panel d in Figs. 9–11) illustrates the importance

of using the highest resolution available when verifying

precipitation forecasts. All model forecasts appear to

overpredict the maximum precipitation over land

(;70mm in the stage IV product), with 80–100-mm

simulated QPFs. The placement of the heaviest pre-

cipitation was too far south and east with the GEFS; it

was correctly shifted north and west in the WRF

downscaled versions. While the SREF (panel b in

Figs. 9–11) correctly identified heavier precipitation

northwest of the DC area and into southeastern Penn-

sylvania, the precipitation expanded too far northward.

Switching from the GEFS to a WRF-based ensemble

(panels c, d, and f in Figs. 9–11) resulted in a generally

larger QPFs over land. As this was true for both the

convective-parameterized BWW (panel e in Figs. 9–11)

as well as the convective-permitting run (panel f in

Figs. 9–11), both resolution andmodel physics/dynamics

played a role inmodifying precipitation fields. TheWRF

3km downscaled from GEFS corrected a spurious pre-

cipitation maxima south of Long Island, and better re-

solved the impact of topography on snowfall amounts

over the Appalachians, as did the NCAR ensemble

(panel d in Figs. 9–11), albeit with amore southerly track

for the storm.

When comparing differences among ensemble means

of the various 3-km WRF ensembles (Fig. 12), it is im-

portant to focus on large spatial areas of systematic

differences. The blotchy patterns found off the mid-

Atlantic coast are noise due to heavy convective pre-

cipitation being located at slightly different locations in

each ensemble member. Despite the noisy plots, there

are some regions with important signals. For example,

the addition of stochastic perturbations tended to re-

duce the ensemble meanQPFs by 5–10mm in the region

north and west of the I-95 corridor. One might expect

that positive and negative stochastic perturbations

should tend to cancel each other out in the ensemble

mean field. This systematic shift can have several po-

tential causes: sampling error (from a limited ensemble

size and, therefore, perturbations may not exactly can-

cel) or nonlinear effects (the ensemble mean may be

close to ‘‘optimal’’ for heavy precipitation in this region,

and any disruption to this scenario leads to smaller total

precipitation amounts). This difference pattern was

even more pronounced for the multiphysics ensemble

(indicating nonlinear sensitivity to the selection of PBL

and microphysics schemes) and the NCAR ensemble

mean. The combination of Thompson two-moment

FIG. 10. As in Fig. 9, but for the 90th percentile.
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microphysics and the MYJ PBL may therefore produce

greater QPFs than other physics options employed in

the multiphysics ensemble.

The impact of the ensemble perturbation method on

spread (standard deviation) is illustrated in Fig. 13.

Among the operational models, the GEFS showed the

smallest spread. The SREF, which varies dynamical

cores, ICs, and physics, has a very large spread in the

northern extent of the precipitation as several members

brought heavy precipitation much farther north. It is

interesting to note that simply downscaling from the

GEFS provides some additional spread, particularly in

the offshore convective region, and in the higher ele-

vations of the Appalachians. Zhang et al. (2007) posed a

mechanism by which small-scale convective instabilities

project onto unbalanced (which radiate away as gravity

waves) and balanced synoptic-scale components, which

can excite baroclinic instabilities. The 3-km simulations

explicitly permit convection, which is particularly active

in the warm sector offshore. Mesoscale processes not

explicitly resolved by the global model, such as differ-

ences in updraft locations, interactions with topography,

and the location and timing of mesoscale snowbands,

may result in greater ensemble spread. In Fig. 14, the

baseline configuration is WRF 3km downscaled from

the GEFS, with spread shown as a difference from the

spread in this run. Again, the signal here is with

systematic differences over land, whereas noisy differ-

ences offshore should be ignored. The addition of

SKEBS and SPPT increased the spread over southern

Pennsylvania and Maryland, in the regions of heavy

snow. The multiphysics WRF ensemble (the most

‘‘SREF like’’ of the experiments) had larger spread in

the region of heaviest precipitation, but smaller spread

across the fringe areas. This is indicative of feedbacks

between convective precipitation and changes in latent

heating (in physical tendencies or explicitly in alternate

microphysics and PBL schemes). The NCAR ensemble,

which cycles its DA independently from the GEFS

(other than BCs), shows a larger area of ensemble

spread (.10mm) through the I-78 corridor of south-

eastern Pennsylvania (Harrisburg to Allentown); as this

ensemble is single physics, this is an indication that its

initial conditions exhibited a larger spread than the op-

erational GEFS. Therefore, differences in spread among

ensemble systems are a consequence of differing initial

spread (e.g., NCAR versus GEFS), model characteris-

tics (GEFS versus WRF), resolution (GEFS versus

downscaled; generally larger spread for convective

permitting), physics (single versus multiple schemes;

generally larger spread for multiphysics), and stochastic

perturbation type.

To further explore ensemble precipitation forecasts,

box-and-whisker diagrams were generated for nine

FIG. 11. As in Fig. 9, but for the 10th percentile.
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locations (Sterling, Virginia; Altoona, Pennsylvania;

State College, Pennsylvania; Harrisburg, Pennsylvania;

Bethlehem, Pennsylvania; Central Park; Upton, New

York; Storrs, Connecticut; and Taunton, Massachu-

setts); we feature three representative plots in Fig. 15.

First, we examine the performance of the operational

systems. At Sterling, all forecast systems produced a

significant SWE event, which verified (not shown).

Several locations, such as Altoona, State College

(Fig. 15c), Storrs, and Taunton (Fig. 15b), were located

along the northern edge of the verifying QPE shield.

Harrisburg, Bethlehem, Upton, and Central Park

(Fig. 15a) all verifiedwith sufficient SWE for heavy snow

but were north of the axis of highest forecast SWE.

At Central Park (Fig. 15a), the difficult forecasting

question was that of a routine, or instead, a high-impact

winter storm; the latter was observed. The operational

GEFS implied a low-end snow event and the SREF in-

dicated potential for a high-impact heavy snow event

with nearly 60mm of SWE. The GEFS grossly

underforecast the SWE at Central Park and the SREF,

skewed toward the wet side, better matched the ob-

served precipitation. The downscaled ensemble mem-

bers provided significantly more snow and (generally)

smaller spread than the original GEFS, providing useful

guidance.

For Taunton (Fig. 15b), the SREF forecasted a high

probability for QPF supporting large SWE with very

large ensemble spread, while the GEFS forecast a low-

end snow event. In Taunton the observed SWE was

close to the median forecast in the GEFS and near the

lower limits of the SREF ensemble. The experimental

guidance generally was biased toward the wetter SREF

solution, with larger spread than the GEFS. From a

forecast perspective, the issue was differentiating

between a high-impact winter storm or a low-end snow

event; the low-end snow event was observed.

At State College (Fig. 15c), and with the exception of

the SREF, most of the guidance had a sharp northern

QPF shield and produced QPF values implying a

FIG. 12. Differences in ensemble mean precipitation, shown as the WRF-GEFS run minus (a) WRF-GEFS 1
SKEB, (b) WRF-GEFS 1 SPPT, (c) WRF-GEFS 1 STOC, and (d) WRF-GEFS 1 PHYS. Red indicates the

original WRF-GEFS ensemble had higher precipitation values.
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low-end snow event. The SREF forecasts indicated a

high probability of a significant snow event, but with

large uncertainty values. Operationally, the difference

between the SREF and GEFS was significant in dis-

tinguishing between a winter storm warning or a winter

weather advisory; the downscaled GEFS members

supported a low-end winter storm with much smaller

uncertainty than the SREF. A low-end heavy snow

event was observed in State College though snow

amounts there varied from 25 cm in southern areas to

under 5 cm a fewmiles north of town. In in the end, State

College had a low-end winter storm with warning

criteria snow.

An optimal design for a convective-permitting en-

semble system produces precipitation forecasts with

both an accurate ensemble mean and an appropriate

ensemble spread. Simply switching to WRF (BWW

ensemble) and downscaling the GEFS to 3 km dramat-

ically increased the QPFs, with the deterministic run

matching closely the observed snow water equivalent at

Central Park and State College. Overall, the downscaled

GEFS ensembles produced both greater precipitation

and larger spread than the original GEFS. The SREF

ensemble mean verified well for New York; however, it

tended to push the heavy precipitation too far north in

other regions. The NCAR ensemble had extremely

large spread for New York City, with the mean signifi-

cantly underforecasting the QPF. As coarse-resolution,

single-physics ensembles can be underdispersive, we

examined the role of stochastic perturbations and mul-

tiphysics in increasing the ensemble spread at the

convective-allowing scales. SPPT was more effective than

SKEBS at increasing (and, in this case, improving) en-

semble spread, with the multiphysics being the most

effective. We also explored changing the spatial scale

and amplitude of SKEBS and SPPT from their default

configuration (not shown), but did not see a large sen-

sitivity in ensemble mean and spread for total pre-

cipitation. Ensemble spread produced stochastically

(with SKEBS and SPPT) could qualitatively compare to

FIG. 13. Ensemble spread (standard deviation from the ensemble mean) of precipitation forecasted by the

(a) GEFS 0.58, (b) WRF 3 km downscaled from the GEFS, (c) SREF, and (d) NCAR 3-km ensemble.
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that of a multiphysics ensemble. SREF and NCAR en-

sembles showed even larger spread, but with an over-

forecasting bias in the SREF and an underforecasting

bias in the NCAR ensemble.

Table 2 quantifies spatial average performance sta-

tistics for the various ensembles. The Brier (1950) score

(similar to themean squared error but for binary events)

is evaluated for the ensembles with respect to various

precipitation thresholds. The continuous ranked prob-

ability score (CRPS; Matheson and Winkler 1976;

Hersbach 2000) is the integral of the Brier score over all

possible thresholds and is useful for verifying ensemble

performance; it reduces to the mean-squared error for

deterministic forecasts (lower values indicating better

performance). Hersbach (2000) decomposes the CRPS

into three components: reliability, resolution, and un-

certainty. We focus on the reliability component (re-

lated to the rank histogram), where a low value

indicates a well-calibrated ensemble where probabilities

‘‘mean what they say’’ in that forecasted probabilities

match actual event probabilities (Wilks 2011). The un-

certainty term is entirely a function of the sample cli-

matology; greater resolution describes the ability of

the forecast PDF to discern events with greater sharp-

ness than climatology. The GEFS, NCAR ensemble, and

3-km WRF ensembles demonstrated clear superiority in

all metrics to the SREF for the 2016 storm; the GEFS

scores better than the SREF for the 2015 case as well.

Skill scores for the GEFS and convection-permitting

ensembles are of a similar magnitude. As Mass et al.

(2002) indicate, jumping to higher resolution (from 12 to

4 km in their case) produces more realistic detail and

structure for weather features, but does not necessarily

improve traditional verification scores as mesoscale

features are relatively underconstrained by data and

their position errors can be amplified. The probabilistic

information from ensembles has clear value beyond a

deterministic, high-resolution run for evaluating fore-

cast confidence. Among the 3-km downscaled runs, the

ensemble simulations downscaled from GEFS clearly

FIG. 14. Differences in ensemble spread of precipitation, shown as the WRF-GEFS run minus (a) WRF-GEFS 1
SKEB, (b) WRF-GEFS 1 SPPT, (c) WRF-GEFS 1 STOC, and (d) WRF-GEFS 1 PHYS.
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FIG. 15. Box-and-whisker plots showing storm total precipitation forecasts at (a) NYC,

(b) Taunton, and (c) State College for all ensembles, for the event ending at 1200 UTC 25

Jan 2016. Red line segments indicate the median value, the box extends from the bottom to

the top quartile of the ensemble forecasts, and whiskers extend to 1.5 times the interquartile

range. Outliers are marked by small blue plus signs. All ensembles are initialized at 1200

UTC 22 Jan, with the exception of SREF, which is initialized at 0900 UTC. Red box in-

dicates the forecast from a 3-km resolutionWRF forecast initialized using the deterministic

GFS. Gold star and horizontal green dashed line show the observed liquid equivalent.
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improved upon the score of the deterministic forecast

downscaled from the GFS. The addition of stochastic

perturbations resulted in a slight improvement in CRPS

and reliability compared to the baseline downscaled

ensemble. It was important to perturb both the IC/BC at

the forecast initiation as well as stochastically during the

forecast phase: WRF-GEFS 1 SKEB beat WRF 1
SKEB (no IC/BC perturbations) and WRF-GEFS (no

stochastic perturbations). Among various perturbation

options, the multiphysics ensemble had the best (lowest)

scores in all categories. Using both SKEB and SPPT

resulted in a similar CRPS, but improved reliability.

d. Predictability of mesoscale features

A convection-permitting ensemble can provide in-

sights into the predictability of mesoscale features in

ECWSs. The distribution of snowfall totals depends not

only on synoptic-scale factors, such as the position of the

primary low pressure area (Fig. 2), but also moist con-

vective processes, which have considerably shorter

predictability horizons. Zhang et al. (2003) illustrated

how moist convective errors can project onto baroclinic

instabilities that impact the synoptic-scale evolution of

the system.

Figure 16 compares ‘‘paintball’’ plots of the simulated

radar reflectivity at 1900 UTC 23 January 2016 (a 31-h

forecast), a time when intense snowbands were occur-

ring. Figure 16a provides a sense of the intrinsic pre-

dictability: differences in ensemble member forecasts

are due to initial condition uncertainty only, not model

error. The only way to gain confidence in the location of

the snowbands is to further refine the GEFS initial

conditions (albeit these are controlled by the data as-

similation system, observations, and prior forecasts).

Figure 16b shows how the ensemble members (each

member, tied to a specific GEFS member for the initial

conditions) change their forecasts in response to sto-

chastic perturbations. These perturbations can be

thought of as a proxy for model error, particularly pro-

cesses inadequately resolved in the model physics that

feed back to the dynamics. As the color coding matches

between panels (i.e., the ensemble member initiated

from GEFS member 1 is shaded the same), we can see

the impact of perturbations in physics on the location of

mesoscale snowbands (also see Figs. 16c,d). For exam-

ple, probabilities for precipitation in southeastern

Pennsylvania are greater in the GEFS ensemble com-

pared to the SPPT ensemble (Figs. 16e,f). This further

illustrates the necessity of a probabilistic or ensemble

approach to the prediction of these features, given the

demonstration of sensitivity to both the initial condi-

tions and model error.

4. Conclusions

The ensemble predictability of precipitation for two

intense east coast winter storms in January 2015 and

2016 is examined. Both storms provided an excellent

case study for probabilistic forecasts, with high-

confidence forecasts indicated for Boston in the 2015

storm and for Washington, D.C., in the 2016 storm, but

with a large ensemble spread in snowfall amounts for

New York City (NYC) in both storms. QPFs from en-

semble forecasting systems are validated against in situ

COOP observations and the stage IV multisensor pre-

cipitation product. This large spread was warranted, as

2015 verified near the lower end of the envelope, and

2016 at the upper end (a new record total); the official

deterministic forecasts were poor, but the ensembles

contained the verifying solution within their envelope.

TABLE 2. Performance of model precipitation forecasts assessed through CRPS, the reliability component of CRPS, and the Brier score

for three precipitation thresholds (12.6, 25.4, and 38mm) for the Jan 2016 storm (forecasts initialized at 1200 UTC 22 Jan 2016; top rows)

and the Jan 2015 storm (forecasts initialized at 1200 UTC 26 Jan 2015; bottom rows).

Expt Mean CRPS Reliability 12.6-mm BS 25.4-mm BS 38-mm BS

GEFS 1.0 (2016) 6.238 3.858 0.136 0.089 0.073

GEFS 0.5 (2016) 6.149 3.798 0.129 0.087 0.072

SREF (2016) 9.309 6.039 0.160 0.201 0.123

BWW 8.663 5.991 0.133 0.147 0.115

NCAR3 km 6.910 3.208 0.134 0.118 0.089

WRF-GEFS 6.638 3.937 0.133 0.105 0.078

WRF 1 SKEB 7.060 5.295 0.140 0.110 0.084

WRF-GEFS 1 SKEB 6.483 3.667 0.131 0.101 0.078

WRF-GEFS 1 SPPT 6.480 3.714 0.131 0.101 0.078

WRF-GEFS 1 STOC 6.494 3.461 0.134 0.104 0.080

WRF-GEFS 1 PHYS 6.088 3.116 0.127 0.100 0.071

Deterministic 3 km 9.311 0.154 0.129 0.101

GEFS 1.0 (2015) 7.746 6.413 0.185 0.168 0.125

SREF (2015) 10.671 8.848 0.261 0.222 0.166
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Indeed, reliability diagrams (compiled for the 2016

storm at all locations and multiple forecast lead times)

indicated that forecasts were still overconfident–

underdispersive, requiring even greater ensemble spread

to match the forecast errors. For the 2015 storm, the

forecasted snow for the NYC area was strongly related

to small east–west position errors in the attendant

coastal surface low, as a tight western gradient of the

FIG. 16. Paintball plots for composite reflectivity for the (a) WRF 3 km initialized from the GEFS and (b) WRF

3 km initialized from the GEFS with SPPT valid at 1900 UTC 23 Jan 2016. Each ensemble member is assigned

a color, and regions exceeding a threshold of 25 dBZ receive a translucent fill. The 25-dBZ threshold was selected to

highlight areas of significant precipitation, such as mesoscale snowbands. (c),(d) Ensemblemember 1 is highlighted

for GEFS and GEFS 1 SPPT, respectively, illustrating the impact of stochastic physics perturbations on the in-

tensity of this individual reflectivity field. (e),(f) The ensemble probability of exceeding 25 dBZ at all grid points for

GEFS and GEFS1 SPPT, respectively, showing the impact of stochastic physics perturbations on the ensemble as

a whole.
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precipitation developed. Using the ensemble sensitiv-

ity technique, these position errors could be traced

to the timing/position of antecedent 500-hPa troughs

1–2 days earlier; an improvement in initial conditions

(observations/DA) might have better constrained this

trough position and, subsequently, increased practical

predictability for NYC.

Predictability horizon diagrams can indicate the

forecast lead time in terms of (i) initial detection,

(ii) emergence of a signal, and (iii) convergence of solu-

tions for an event. These differ considerably by storm

and by feature. For example, for the 2016 storm initial

detection (at the synoptic scale) occurred at least 6 days

in advance (considerably more than the 2015 storm),

whereas mesoscale predictability of snowbands did not

converge even 24h prior to the event. Zhang et al. (2003)

demonstrated that small-scale perturbations can grow

rapidly as a result of convective instabilities, whereas

perturbations projected onto baroclinic instabilities

grow more slowly but may reach larger amplitudes. The

increase in spatial coverage of high-confidence forecasts

for heavy snow can be tracked in ensemble probability

plots, a potential forecast tool for the real-time evalua-

tion of major precipitation events. It is important that

these forecasts are well calibrated for extreme events

such as east coast winter storms. The predictability di-

agrams also provide good visualization of uncertainty

for both operational forecasters and students learning

about uncertainty in weather forecasting.

Convective-scale ensembles promise to be the future

of operational NWP, with the ability to explicitly resolve

mesoscale features such as squall lines, banding features

in winter cyclones, and terrain interactions. Therefore,

exploration of an optimal ensemble design, develop-

ment of a high-resolution regional assimilation system,

use of innovative graphical displays, and validation of

performance of such a system for high-impact weather

such as ECWSs and extreme precipitation events in the

highly populated northeastern United States is an im-

portant prerequisite for forecasting and decision support

capabilities. Several sets of ensemble forecasts at 3-km

resolution downscaled from the GEFS using WRF were

run for the 2016 storm using various perturbation

methods: IC/BC only, SKEBS, SPPT, both, and multi-

physics. All perturbation methods improved upon the

control case, with the multiphysics scoring best for

CRPS and reliability with respect to precipitation ob-

servations. Finally, paintball plots provided some in-

sights into both the intrinsic and practical predictability

(by comparing IC only and stochastically perturbed

ensembles) of precipitation features such as mesoscale

snowbands; slight changes in initial conditions or small

perturbations during the forecast phase could lead to

considerable position and timing differences for these

bands. When using the next generation of convection-

permitting NWP to predict east coast winter storms and

communicating forecasts to end users, it is important to

keep in mind predictability limits and provide adequate

notions of forecast confidence.
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