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ABSTRACT

The effective identification of clouds andmonitoring of their evolution are important towardmore accurate

quantitative precipitation estimation and forecast. In this study, a new gradient-based cloud-image seg-

mentation algorithm is developed using image processing techniques. This method integrates morphological

image gradient magnitudes to separate cloud systems and patches boundaries. A varying scale kernel is

implemented to reduce the sensitivity of image segmentation to noise and to capture objects with various

finenesses of the edges in remote sensing images. The proposed method is flexible and extendable from single

to multispectral imagery. Case studies were carried out to validate the algorithm by applying the proposed

segmentation algorithm to synthetic radiances for channels of the Geostationary Operational Environmental

Satellite (GOES-16) simulated by a high-resolution weather prediction model. The proposed method com-

pares favorablywith the existing cloud-patch-based segmentation technique implemented in the Precipitation

Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification

System (PERSIANN-CCS) rainfall retrieval algorithm. Evaluation of event-based images indicates that

the proposed algorithm has potentials comparing to the conventional segmentation technique used in

PERSIANN-CCS to improve rain detection and estimation skills with an accuracy rate of up to 98% in

identifying cloud regions.

1. Introduction

The purpose of this study is to improve the state-of-

the-art version of Precipitation Estimation fromRemotely

Sensed Information Using Artificial Neural Networks–

Cloud Classification System (PERSIANN-CCS) to sup-

port theNational Aeronautics and SpaceAdministration’s

(NASA) Integrated Multisatellite Retrievals for Global

Precipitation Measurement (IMERG) algorithm of the

Global Precipitation Measurement (GPM) mission for

near-real-time monitoring of global precipitation at 0.18 3
0.18 resolution over the chosen domain of 508–508S with

30-min time intervals (Huffman et al. 2015). IMERG

consists of algorithms from the Climate Prediction Center

(CPC) morphing technique (CMORPH) from NOAA

(Joyce et al. 2004), the Tropical RainfallMeasuringMission

(TRMM)Multisatellite Precipitation Analysis (TMPA)

from NASA (Huffman et al. 2007), and microwave-

recalibrated PERSIANN-CCS (Hong et al. 2004).

The processing steps of PERSIANN-CCS algorithm

include 1) cloud image segmentation, 2) image feature

extraction and classification, and 3) rainfall mapping.

Although PERSIANN-CCS has high spatial and temporal

resolutions, it may sometimes overestimate or underesti-

mate rainfall amount due to some of its limitations

(Behrangi et al. 2009a). Despite recent developments to

advance PERSIANN-CCS (Tao et al. 2016; Nasrollahi

et al. 2013; Mahrooghy et al. 2012; Behrangi et al. 2009a),

little attention is paid to improve the uncertainties within

its cloud segmentation algorithm. Cloud image segmen-

tation is the first and one of the most important steps in all

precipitation retrieval algorithms.
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Rainfall estimation algorithms based on infrared (IR)

cloud images can be categorized into three general groups

depending on the method used for extracting informa-

tion from the image: 1) pixel-based, 2) local-texture-

based, and 3) patch-based algorithms (Hong et al. 2004).

PERSIANN-CCS uses a cloud-patch-based technique

and applies artificial neural networks to classify clouds

(Nguyen et al. 2019). Precipitation is then estimated

based on a relationship between precipitation rates

and the cloud-top temperatures. PERSIANN-CCS seg-

mentation combines thresholding and seeded region

growing (SRG; Adams and Bischof 1994) algorithm to

separate satellite images into distinctive cloud patches

(Hong et al. 2004). The minimum brightness tempera-

tures (Tbmin) of the cloud patches are determined to

use as seeds. Then, the temperature threshold is raised

to identify a new set of pixels neighboring the seeded

points. This procedure continues until reaching the

borders of other seeded regions or cloud-free regions.

The temperature threshold is iteratively increased to a

maximum of 253K. Afterward, a morphological opera-

tion is applied to merge tiny regions (Hong et al. 2004).

Further details of the precipitation retrieval algorithm

along with the segmentation process can be found in

Hong et al. (2003, 2006).

Besides the patch-based algorithm used by PERSIANN-

CCS, several other algorithms have been developed to

detect and segment clouds from satellite imageries, such

as constant or changing threshold methods (Rossow and

Garder 1993; Stowe et al. 1999; Kriebel et al. 2003;

Bendix et al. 2004; EUMETSAT 2007; Sun et al. 2016),

multidimensional histogram approaches (Kärner 2000),
neural networks (Yhann and Simpson 1995; Tian et al.

1999; Jang et al. 2006), haze optimized transformation

(HOT) algorithm (Zhang et al. 2002; Zhang and Guindon

2003), statistical and pattern recognition methods (Molnar

and Coakley 1985; Kärner 2000; Murino et al. 2014),

variational gradient-based fusion method (Li et al.

2012), pixel-based seed identification, and object-based

region growing—the watershed segmentation (Sedano

et al. 2011; Beucher 1993; Vincent and Soille 1991).

Among these cloud detection techniques, the threshold-

based segmentation methods are the most broadly applied

ones in satellite-based precipitation retrieval algorithms

because they are simple, fast, and have agreeable accu-

racy (Hagolle et al. 2010; Jedlovec et al. 2008; Zhu et al.

2015). In threshold-based techniques, clouds are generally

differentiated by a higher reflectance or lower temperature

than the background or Earth surface. A major source of

error comes from the complex land surface composition

and the high variability of reflectivity in different cloud

types. A threshold that is appropriate to a certain cloud

type or a certain geographical regionmaynot be applicable

for another (Sun et al. 2016). Moreover, pixels defined

by the threshold can only consider the radiometric and

textural features of an individual pixel rather than con-

textual information provided by the image regions as

objects (Blaschke et al. 2014). Hence, the potential im-

plementation of an object-based approach designed to

segment the clouds into meaningful objects indepen-

dent of the predetermined threshold is superior to the

aforementioned segmentation techniques in the context

of patch-based precipitation retrieval algorithms.

In addition to the disadvantages of threshold-based

algorithms, the segmentation process of IR-based rain-

fall estimation algorithms including PERSIANN-CCS

have been using images from a single channel, with colder

cloud-top brightness temperature indicates higher pre-

cipitation probabilities (Kidd et al. 2003; Huffman et al.

2007; Levizzani et al. 2001). However, different types of

cloudsmay have similar cloud-top brightness temperatures

in longwave IR channels (Sorooshian et al. 2000). Mea-

surements from different channels can provide addi-

tional information about the structure and vertical

profile of clouds that lead to more accurate rain esti-

mates (Xu et al. 2005). A technique for cloud segmen-

tation using multichannel information is expected to

outperform those using single channels. For example,

Behrangi et al. (2009b) used multispectral analysis to

improve rain/no rain detection capabilities. They found

that combining any two IR channels in the rain retrieval

algorithm seems superior to the one using a single IR

channel, and an improvement on the rain rate statistics

can be gained.

This study is motivated by the recognition of the dis-

advantages of threshold-based segmentation techniques

for patch-based precipitation retrieval algorithms. We

introduce a mathematical morphology-based method

that integrates the complementary multispectral in-

formation from the gradient magnitudes of satellite

images and is a well fit in the context of PERSIANN-

CCS segmentation algorithm. This gradient-based multi-

spectral segmentation (GMS) algorithm comprises several

approaches that have been developed to extract various

types of clouds including warm clouds. In this study, the

algorithm is applied to model-simulated GOES-16 Ad-

vanced Baseline Imager (ABI) imagery. The simulated

radiances for different channels ofGOES-16ABI along

with the accompanying model simulated horizontal

distribution of all clouds hydrometeors are used as the

reference to validate the proposed algorithm in detect-

ing and segmenting clouds.

Application of the proposed algorithmon realGOES-16

observation is also provided in the online supplemental

material. Although the GMS algorithm is applied to

geostationary satellite imageries in this study, it can be
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extended to other types of satellite datasets as well. This

studywill be the first step toward the ultimate goal which

is precipitation estimation from remotely sensed in-

formation. In section 2, we explain the consisting steps

of the developed GMS algorithm. Description of data-

sets and the case studies used in the study are described

in section 3. Results and evaluation using both statistical

scores and visual analyses are provided in section 4.

Last, the conclusions of this study are presented in

section 5.

2. Methodology

GMS framework for cloud detection and
segmentation

TheGMS algorithm is built on a hierarchical structure

as the flow diagram shown in Fig. 1. This algorithm

mainly carries out the following steps: multiscale gra-

dient magnitude computation, markers generation, and

watershed segmentation. They will be explained in the

following subsections.

1) MULTISCALE GRADIENT MAGNITUDE

COMPUTATION

Gradient computation here means identifying the

maximum change of each pixel’s intensity in the neigh-

borhood. The gradient highlights the sharp changes in

intensity or the edges in an image. In a grayscale mor-

phology, the gradient can be attained by subtracting the

eroded image from the dilated image using a structuring

element (Soille and Pesaresi 2002). Grayscale image

pixels’ value can be represented with the x and y co-

ordinates as a three-dimensional set (Parvati et al. 2008).

With this concept, grayscale dilation can be defined as

follows.

Let f (s, t) represent an image and B(x, y) be the

structuring element. The structuring element (kernel)

is a group of pixels of different sizes and shapes. In this

study, a flat kernel, which means a squared window of

pixels with equal weights, is considered for simplicity.

Grayscale dilation of f by B is defined as below:

(f4B)
(s,t)

5maxff (s2 x, t2 y)

1B(x, y)j(s2 x), (t2 y) 2 D
f
; (x, y) 2 D

B
g .
(1)

Grayscale erosion of f by B is defined as below:

( f2B)
(s,t)

5minff (s1 x, t1 y)

2B(x, y)j(s1 x), (t1 y) 2 D
f
; (x, y) 2 D

B
g ,

(2)

where Df and DB are the domains of f and B, re-

spectively. The conditions that (s1 x) and (t1 y) have to

be in the domain of f and (x, y) have to be in the domain

of B is equivalent to the condition in the binary de-

scription of dilation and erosion. Two sets have to at

least share one pixel in common in dilation, however,

the structuring element has to be completely contained

by the set being eroded in erosion (Pahsa 2006). For

further details on the erosion and dilation operations

please refer to Gonzalez and Woods (1992).

The gradient image is calculated using Eq. (3) below

from the original image, and it corresponds to the sharp-

ness of the intensity change for each pixel (Parvati et al.

2008):

MG(f )5 (f4B)2 (f2B) . (3)

A multiscale gradient algorithm capable of utilizing

a varying scale-structuring element in mathematical

morphology is implemented to reduce the sensitivity to

noise and to extract various finenesses of the edges of the

objects in remote sensing images (Wang 1997):

MG(f )5
1

n
�
n

i51

f[(f4B
i
)2 (f2B

i
)]2B

i21
g , (4)

FIG. 1. Flow diagram of the proposed multispectral gradient-based

segmentation algorithm.
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where Bi denotes the group of square structuring ele-

ments with the size of (2i1 1)3 (2i1 1) pixels and n is

the scale which in this study is set to value of 5.

Component-wise and vector-based strategies can be

used to extend mathematical morphology from a single-

channel grayscale image to a multichannel image

(Comer and Delp 1999). The component-wise strategy

processes each channel of the multispectral image sep-

arately, while the vector-based strategy uses a vector

approach to process the multispectral channels all at

once (Soille 2003). In this study, the component-wise

approach is used for multispectral gradient image

computation, since it is easy to implement and the re-

sults are satisfying. The morphological gradient (MG)

is calculated separately for each band f from Eq. (5),

and the resulting gradient image values are combined

via equal weighted summation to generate a single

gradient image to represent different channels. This

way the gradient values can be obtained by summing

up the complementary measurements from multiple

channels of satellite imagery:

MG(f )5 �
n

i51

MG(f
i
) . (5)

2) MARKER GENERATION AND LOCAL MINIMA

ELIMINATION

Markers are the selected regional minima of the input

image, which are being used before watershed trans-

form. The reason to employ so-called markers is to

reduce redundant catchment basins due to the high

sensitivity of the watershed transformation algorithm

to noise and irrelevant local minima. The generation

of pertinent markers is important to the successful

application of watershed segmentation (Soille and

Pesaresi 2002).

The markers are either single points or regions that

are placed inside objects of interest (Parvati et al. 2008).

In this study, we generated markers through automatic

thresholding of gradient magnitudes. Clusters of image

pixels are classified as seed or nonseed pixels using the

Otsu thresholding method (Otsu 1979), which auto-

matically selects an optimal threshold based on maxi-

mizing the separability of the group-wise pixel values

in gray levels, to generate the marker image. It

selects a satisfactory threshold level to extract objects

from their background based on a gray-level histo-

gram. The reason to implement this method is based

on the histogram plot of the gradient magnitudes

shown in Fig. 2 that gradient magnitudes of most pixels

are confined to the lower value range, while the sharp

edge pixels with large gradient magnitudes are greater

and separable from those within the background. For

further explanation of this thresholding method and

examples, one can refer to Otsu (1979) and Zhang

et al. (2014).

3) WATERSHED SEGMENTATION ON THE

GRADIENT IMAGE

The watershed transformation (Vincent and Soille

1991) is a powerful segmentation algorithm from

mathematical morphology and has been used in many

segmentation problems (Hsu et al. 2010; Zahraei et al.

2013; Lakshmanan et al. 2009). This approach is usually

applied to satellite images to extract regions (i.e., ob-

jects) that are identified as clouds. The basic idea of the

watershed algorithm is to consider the single channel

image as a three-dimensional topography map where

the lower values are considered as valleys (local

minima) and the higher values are assumed to be hills.

Each local minimum is then flooded to neighboring

pixels until meeting an adjacent catchment. A ridgeline

is then delineated along any two regions’ borders, hence

the catchment basins are delimited by watershed lines

(Fig. 3). Further information about the watershed

segmentation algorithm can be found in Vincent and

Soille (1991).

The morphology-based watershed transformation

used in this study is applied to the gradient magnitude of

satellite images. This is different from the traditional

segmentation used in PERSIANN-CCS algorithm that

the watershed transformation is directly applied on

temperature values lower than a predefined threshold.

Applying transformation on gradient images can cap-

ture warm clouds without dependency on predefined

temperature thresholds as a controlling factor. Figure 4a

demonstrates how local minima associated with warmer

FIG. 2. Histogram plot of the gradient magnitude image. The

horizontal axis shows the range of gradient magnitude values,

and the vertical axis is the number of pixels with each gradient

magnitude value.
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cloud regions will be disregarded by a predefined

threshold applied to the values before implementing

the watershed algorithm. Increasing the temperature

threshold in order to capture the clouds with the

higher temperature values (Fig. 4b) results in merging

the local minima which are representative of distinct

clouds and causes misleading outcomes. Optimal re-

sults are achieved when the watershed algorithm is

applied to the gradient magnitude images that de-

lineate the boundaries of all types of clouds, regard-

less of their height or temperature. In Fig. 4c, high

gradient magnitude values are representative of pixels

with sharp intensity transitions or cloud boundaries.

Hence, the catchment basins are described as re-

gions between any two local maximum of the gradient

magnitudes.

3. Description of the datasets

a. GOES-16 ABI

The primary datasets collected and processed in this

research include different channels of geostationary

weather satellite bands of GOES-16. The ABI (Schmit

et al. 2005) on board GOES-16 can provide more

accurate, detailed, and timely detection of high-impact

environmental phenomena by more spectral channels (2

visible, 4 near-infrared, and 10 infrared channels), and

higher spatial (2 km 3 2 km at nadir for infrared chan-

nels) and temporal (every 5min for the contiguous

United States) resolutions over its predecessors. The

development of the ABI is being done as a collaborative

effort between NASA and NOAA. For readers in-

terested in further details, Schmit et al. (2005) is con-

sidered as the reference.

b. PSU WRF-EnKF dataset

We used two simulated cases to examine the per-

formance of the proposed algorithm. Both two simu-

lations are generated using the Weather Research

and Forecasting (WRF) Model with its Advanced

Research version of WRF (ARW) dynamical core

(Skamarock et al. 2008), with initial conditions gen-

erated by the WRF-based ensemble Kalman filter

(EnKF) data assimilation system developed at The

Pennsylvania State University (Zhang et al. 2009,

2011).

The first case study is a simulation of Hurricane

Harvey (2017), which brought record-breaking cata-

strophic rainfall in southern Texas. Harvey is the

second costliest hurricane in history, just below

Hurricane Katrina (2005), and it is also the first storm

that was fully captured by GOES-16. The simulation

utilized version 3.6.1 of the WRF Model with a 3-km

horizontal resolution. After assimilating brightness

temperature observations from ABI every 1 h for

several cycles, the deterministic forecast is initialized

from the EnKF analysis at 0600 UTC 23 August 2017.

For the purpose of this study, we only used simulated

brightness temperature of the model outputs of a

1-day period from 0000 UTC 26 August to 0000 UTC

27 August, right after Harvey made its landfall.

FIG. 3. Watershed transformation process diagram. Each of the

positive signs represents one watershed domain.

FIG. 4. Schematic representation of the watershed segmentation technique applied (a),(b) on the image values after applying predefined

thresholds and (c) on the image gradient magnitudes. The positive and negative signs each represent the separate cloud regions that are

included and excluded, respectively, in the segmentation process.
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Further details of the simulation of Hurricane Harvey,

including verifications of its track, intensity, and cloud

forecasts with observations can be found in Zhang

et al. (2019).

The second case is a simulation of tornadic supercell

thunderstorms across Wyoming, Nebraska, and Colo-

rado on 12 June 2017, which is one of the first severe

thunderstorm event captured by GOES-16. The simu-

lation utilized version 3.8.1 of the WRF Model with a

1-km horizontal resolution. Brightness temperature

observations from ABI are assimilated every 5min, and

the deterministic forecast is initialized from EnKF

analysis at 2000 UTC 12 June 2017, when the thunder-

storms were just initiated. The simulations were carried

out until 0000 UTC 13 June 2017, with outputs every

5min. Further details of the simulation of this se-

vere thunderstorm event and the verifications of the

thunderstorm predictions with the observations can be

found in Zhang et al. (2018).

These two cases differ significantly in the strength and

size of clouds. The tornadic supercell thunderstorm case

is one of the smallest organized cloud systems and occur

mostly over themidlatitude continents, while hurricanes

have the largest and most expansive cloud systems

originating from the tropical oceans. We can examine

the strength and flexibility of the proposed algorithms

using these two distinctive situations to see if it can de-

tect diverse types of clouds effectively by utilizing fixed

parameter values.

4. Results and discussion

Experiments are carried out to validate the GMS al-

gorithm by applying it to the model-simulated GOES-16

FIG. 5. Visualization of the gradient-based segmentation result for the simulated Hurricane Harvey event at 0300 UTC 26 Aug 2017:

(a) simulated IR longwave window band from GOES-16 ABI (the scale bar is temperature in K), (b) normalized gradient magnitudes

imagery for the corresponding simulated IR channel (scale bar is normalized gradient magnitude values), (c) resulting cloud segments

(each random color represents a distinct segment). The vertical and horizontal axes represent the latitude and longitude of the region,

respectively.

FIG. 6. Visualization of the gradient-based segmentation result for the simulated Wyoming tornado event at 2120 UTC 12 Jun 2017:

(a) simulated IR longwave window band from GOES-16 ABI (the scale bar is temperature in K), (b) normalized gradient magnitudes

imagery for the corresponding simulated IR channel (scale bar is normalized gradient magnitude values), (c) resulting cloud segments

from GMS (each random color represents a distinct segment).
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ABI imageries, and compare with the accompanying

synthetic cloud mask from the horizontal distribution

of all cloud hydrometeors known as the ‘‘ground truth.’’

Visual comparisons and statistical evaluations are

performed for both cases to obtain the accuracy of the

proposed segmentation algorithm in comparison to the

single-channel, threshold-based segmentation approach

that is currently in use for PERSIANN-CCS. Although

theGMS algorithm is capable of integrating information

from different spectral bands, the results shown in

this section are obtained from single-band IR cloud-

top brightness temperature in order to be consistent

with the PERSIANN-CCS single-band segmentation

algorithm.

a. Visual comparison

The final gradient-based segmentation results from

simulated IR input along with gradient magnitude

imageries of Hurricane Harvey and the Wyoming thun-

derstorm event are shown in Figs. 5 and 6, respectively.

The gradient magnitudes are calculated from the IR im-

ages and the watershed segmentation is then applied to

the gradient magnitude imageries based on the generated

markers to achieve the final cloud patch segmentation.

Figures 7 and 8 show that in both cases the newly

developed algorithm can capture more types of clouds,

especially thewarmer ones comparedwith thePERSIANN-

CCS in reference to the truth cloud mask from the

model simulations. This indicates that the gradient-

based segmentation algorithm is capable of overcoming

the drawback associated with threshold-based segmen-

tation approaches implemented in patch-based pre-

cipitation retrieval algorithms.

As mentioned in the methodology section, the

gradient-based segmentation algorithm is capable of

taking into account the complementary measurements

FIG. 7. Visual comparison of the two segmentation outputs based on the truth mask as a reference for the simulated Hurricane Harvey

event at 0300 UTC 26 Aug 2017. (a) Truth cloud mask used as a reference. The dark blue region implies the cloud existence.

(b) PERSIANN-CCS segmentation result from single-IR channel. (c) Gradient-based segmentation algorithm output based on only the

IR channel. In (b) and (c), each random color identifies a distinct cloud patch.

FIG. 8. Visual comparison of the two segmentation outputs based on the truth mask as a reference for the simulatedWyoming tornado

event at 2120 UTC 12 Jun 2017. (a) Truth cloud mask used as a reference. The dark blue region implies the cloud existence.

(b) PERSIANN-CCS segmentation result from single-IR channel. (c) Gradient-based segmentation algorithm output based on only the

IR channel. In (b) and (c), each random color identifies a distinct cloud patch.
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from multiple channels. To visually assess the effect of

integrating information from other spectral bands,

channel 8 (lower-tropospheric water vapor channel) of

the GOES-16 ABI is also processed and gradient mag-

nitudes are calculated separately for this band. The

gradient values from each spectral band are then summed

up to generate a single-valued multispectral gradient

magnitude image. The watershed segmentation is then

applied to the combined gradient magnitude imagery.

The segmentation results from each scenario (IR only

and IR1 water vapor) are shown in Fig. 9 implying that

integration of measurements from other spectral bands

will provide useful information for distinct delineation

of the clouds and helps to discard cloud patches that are

mistakenly detected due to the background noise in the

utilization of single channel data. Adding additional

channels provides useful information for better defining

the cloud segments and leads to a more accurate clas-

sification as the next step toward more robust intensity

estimation and areal delineation of rainfall.

b. Statistical evaluation

A reference cloud mask is needed in order to perform

an accuracy assessment and to compare the outcomes of

the proposed segmentation algorithms. The model-

simulated mixing ratios combining all hydrometeors,

including cloud water, cloud ice, rainwater, snow, and

graupel, are used as ‘‘truth’’ observation mask to de-

termine whether a grid point is covered by cloud or not.

These hydrometeor mixing ratios are prognostic model

variables simulated by the microphysics scheme and

evolve in correspondence with the dynamical and

FIG. 9. Visualizing the effect of integrating complementary information from lower-level water vapor for the Wyoming tornado case at

2105 UTC 12 Jun 2017. (a) Final cloud segments from the gradient magnitudes of lower water vapor band. (b) Final cloud segments from

the gradient magnitudes of single-IR longwave window band. (c) Final cloud segments from the combined gradient magnitude image of

both spectral bands (IR longwave window and water vapor band).
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thermodynamical processes within the WRF Model.

After summing them all together and taking the vertical

maximum value within each column, a threshold of 103
1026 kg kg21 is applied to the horizontal hydrometeor

mixing ratio map. This value is a widely used threshold

for cloud-top and cloud-base identification from model

simulations beginning from Otkin and Greenwald

(2008). The grid point is cloudy if the hydrometeor

mixing ratio at this location is greater than the

threshold and is clear sky if it is lower than the

threshold. The model-derived horizontal distribution

of clouds is used as the truth to verify and compare the

two different cloud identification algorithms. The situ-

ations of whether the segmentation algorithm detects

the clouds successfully or not are shown in Table 1 with

the verification indices used along with their application

listed in Table 2.

Constant improvements in segmentation skill using

the GMS algorithm are evident for both events with

their cloud systems evolving considerably in structure

and morphology (Figs. 10, 11). The improvement is

pronounced when only IR data are used to keep the

consistency between the proposed segmentation algo-

rithm and the one used in PERSIANN-CCS. The only

metric that is not showing the performance enhance-

ment is the false alarm ratio (FAR; with the best score

of zero), with a nonzero but insignificant average value

of 0.03 (Figs. 10b, 11b). This higher value of FAR is in

compensation for the higher POD that we obtained in

comparison to the PERSIANN-CCS segmentation al-

gorithm. The conventional segmentation algorithm

misses clouds with higher temperatures than the man-

ually set temperature threshold and only captures the

colder clouds. Therefore, low or zero FAR is expected.

The gradient-based segmentation algorithm, on the

other hand, can cover both warm and cold clouds with

potentially higher FAR.

5. Summary and conclusions

A gradient-based multispectral segmentation algo-

rithm for cloud detection and segmentation using sat-

ellite imageries is developed and presented. The goal is

to provide a more effective and flexible method to

overcome the shortcomings associated with the tradi-

tional patch-based cloud segmentation approaches

toward more reliable precipitation retrievals. This

algorithm is based on mathematical morphology, and

image processing techniques developed to extract in-

formation from single or multiple channels of satellite

imagery. Due to the unique characteristics of each

spectral band, accumulation of additional sources of

information from multichannel satellite imagery be-

came viable by using the gradient magnitudes in-

stead of directly utilizing each channel’s values. This

gradient-based cloud image segmentation method

integrates morphological image gradient magnitudes

to separable cloud systems and patches boundaries

TABLE 2. Verification metrics.

Verification metrics Formulation Range Application

Undetected error rate Ur 5 Misses/number of

observed events

(0 # Ur # 1); perfect score: 0 The rate of error in detection

of hit events

Probability of detection POD 5 Hits/number of

observed events

(0 # POD # 1); perfect

score: 1

The likelihood of correct

detection

False alarm ratio Fr 5 False alarm/number of not

observed events

(0 # Fr # 1); perfect score: 0 The number of false alarms

per total number of alarms

Bias score Bias 5 (Hits 1 false alarms)/number

of observed events

(0 # Bias); perfect score: 1 How similar were the

frequencies of existing

and detected events?

Equitable threat

score (ETS)

ETS 5 Hits 2 hitsrandom/(hits 1
misses 1 false alarms 2 hitsrandom)

(21/3 , ETS , 1); perfect

score: 1

How well did the existing

events correspond to the

detected events?

TABLE 1. The four possible diagnosis results of testing.

Detected Not detected Probability

Existing True positive (TP) False negative (FN) TP 1 FN 5 100%

The existing defect is detected (hit) The existing defect is not detected (miss)

Nonexisting False positive (FP) True negative (TN) FP 1 TN 5 100%

A defect is detected even though it

does not exist (false alarm)

No defect is detected, where no defect

exists (correct rejection)

Total FP 1 TP FN 1 TN Total 5 TP 1 FN 1 TN 1 FP
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using a convolution operation. As a result, a wider range

of cloud types regardless of their temperature and height

can be detected and segmented. The proposed algo-

rithm, as well as the conventional threshold-based

segmentation approach used in the PERSIANN-CCS

algorithm, is applied on the simulated GOES-16 ABI

imageries from high-resolution numerical weather

simulations accompanied with their modeled hori-

zontal distribution of hydrometeors as the reference

to examine their performance. Results from visual and

statistical comparison indicate a constant improved

performance of the gradient-based segmentation tech-

nique over the traditional approaches specifically in

terms of extracting warm cloud regions. More accurate

extraction of cloud patches provides the opportunity

for a more effective cloud tracking toward dynamic

analysis of precipitation estimation. This algorithm

is the first step toward reducing the uncertainty

FIG. 10. Statistical comparison of two different segmentation algorithms for the Hurricane Harvey case: (a) POD,

(b) FAR, (c) undetected error rate, (d) bias score, and (e) equitable threat score.
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associated with precipitation retrieval from remotely

sensed information.
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