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[1] This study explores the treatment of model error and
uncertainties through simultaneous state and parameter
estimation (SSPE) with an ensemble Kalman filter (EnKF)
in the simulation of a 2006 air pollution event over the
greater Houston area during the Second Texas Air Quality
Study (TexAQS‐II). Two parameters in the atmospheric
boundary layer parameterization associated with large
model sensitivities are combined with standard prognostic
variables in an augmented state vector to be continuously
updated through assimilation of wind profiler observations.
It is found that forecasts of the atmosphere with EnKF/
SSPE are markedly improved over experiments with no
state and/or parameter estimation. More specifically, the
EnKF/SSPE is shown to help alleviate a near‐surface cold
bias and to alter the momentum mixing in the boundary
layer to produce more realistic wind profiles. Citation: Hu,
X.‐M., F. Zhang, and J. W. Nielsen‐Gammon (2010), Ensemble‐
based simultaneous state and parameter estimation for treatment
of mesoscale model error: A real‐data study, Geophys. Res. Lett.,
37, L08802, doi:10.1029/2010GL043017.

1. Introduction

[2] Accurate estimation of a system’s state is intrinsically
desirable and is critical for accurately forecasting its future
states. The ensemble Kalman filter (EnKF), first proposed
by Evensen [1994], has become increasingly popular for
state estimation in geosciences (see recent review articles of
Evensen [2003] and Hamill [2006]), including recent
applications in air‐pollution meteorology [e.g., Stuart et al.,
2007]. The primary advantage of the EnKF over traditional
variational data assimilation methods is the use of flow‐
dependent error covariance derived from short‐term ensem-
ble forecasts along with its ease of implementation and
seamless coupling with ensemble forecasting [Zhang and
Snyder, 2007].
[3] Ideally, the ensemble of the first guesses would be

drawn from the system attractor. However, because they are
drawn from forecasts made by imperfect models, model
error may cause all short‐term forecasts to deviate from the
system attractor, causing background error covariances to be
estimated with respect to an incorrect state [Hansen, 2002].
Model error may be structural (model equations have a

different functional form from the true laws governing the
system) or parametric (the parameters used in model equa-
tions are not accurate). Structural model errors can often be
converted into parametric errors by generalizing the func-
tional forms [Hansen, 2002].
[4] The EnKF may account for model error through the

state augmentation approach, by simultaneously estimating
the optimal parameter values in addition to the conventional
model state vector. Simultaneous state and parameter esti-
mation with the EnKF has produced encouraging results
when simulated observations from an independent simula-
tion (“truth”) are assimilated [Annan et al., 2005a; Hacker
and Snyder, 2005; Aksoy et al., 2006a, 2006b; Tong and
Xue, 2008]. This application of the EnKF not only may
reduce the parametric errors directly, but may also offset
structural errors to some extent [Hansen and Penland,
2007]. Thus simultaneous state and parameter estimation
should help forecasts remain closer to the state attractor as
they evolve and lead to better background‐error covariance
estimates, thereby improving subsequent analyses. Other,
less direct ways of accounting for model error within the
EnKF framework include covariance inflation/relaxation
[Zhang et al., 2004], and the use of multi‐model multi‐
physics ensembles [Meng and Zhang, 2007].
[5] Few tests of the state augmentation approach have

been performed with actual observations. When assimilating
real data, simultaneous state and parameter estimation with
the EnKF has also been shown to improve state estimation
in climate modeling [Annan et al., 2005b; Kondrashov et
al., 2008]. However, to the best of our knowledge, the
effectiveness of the simultaneous state and parameter esti-
mation with the EnKF in regional scale or mesoscale
modeling applications has not been examined with real‐data
observations.
[6] In this study, the improvement of simultaneous state

and parameter estimation over the regular state‐estimation‐
only EnKF is investigated by estimating the values of cer-
tain fundamental parameters involving vertical mixing
within the Weather Research and Forecast (WRF) model
simultaneously with regular model state variables. Planetary
boundary layer (PBL) schemes parameterize the turbulent
vertical fluxes of heat, momentum and constituents such as
moisture. Such schemes are important components of
meteorological and air quality models. Errors and
uncertainties associated with PBL schemes remain one of the
primary sources of inaccuracies in model simulations [Pleim,
2007b]. Conventional PBL schemes are well‐suited for
parameter estimation because they include a variety of explicit
or implicit parameters whose suboptimal specifications can
cause observable systematic errors in model simulations.
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[7] The scheme utilized here is the Asymmetrical Con-
vective Model, version 2 (ACM2) PBL scheme [Pleim,
2007a, 2007b]. ACM2 includes an eddy diffusion compo-
nent within the convective boundary layer in addition to the
explicit nonlocal transport, and a weighting factor appor-
tions the mixing due to local diffusion and nonlocal trans-
port. Thus a common structural difference among PBL
schemes is treated by ACM2 as a parameter. This makes the
scheme particularly attractive for parameter estimation
studies, although that particular parameter is not estimated
here.

2. Methodology

2.1. Forecast Model: WRF

[8] The WRF model version 3.0.1 is used in this study
[Skamarock et al., 2005]. Three one‐way nested domains
are used with grid spacings of 108, 36, and 12 km,
respectively. The coarse domain covers North and Central
America, the second covers the contiguous United States
and most of the Gulf of Mexico, the third covers Texas and
adjacent portions of the southern United States. All model
domains have 43 vertical layers, and the model top is set at
50 hPa. All model domains use Dudhia shortwave radiation,
the rapid radiative transfer model (RRTM) for longwave
radiation, the 6‐class microphysics scheme (WSM6), the
Noah land‐surface scheme, the Grell‐Dévényi ensemble
convective parameterization, and the ACM2 PBL scheme
with the Monin‐Obukhov surface layer scheme. The
National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) operational analyses and
forecasts are used for all initial and boundary conditions
except that the initial soil moisture is taken from the North
American Regional Reanalysis (NARR). During the simu-
lation period, the GFS has higher soil moisture over TX than
other data sets (such as NARR) and earlier experiments
showed that GFS soil moisture caused a significant cold bias
over TX.
[9] Accurate representation of vertical mixing is particu-

larly important in the simulation of transport and dispersion of
pollutants, so an episode of poor air quality is selected. The
simulations are conducted for the period from 1200 UTC
August 29, 2006 to 0600 UTC September 2, 2006 over
Texas. In the evening of August 29, there was a cold front
passing Texas from north to south. In the wake of the frontal
passage, northerly wind dominated at 850 hPa, which
brought continental ozone and its precursors to Houston
[Rappenglück et al., 2008]. On August 31 and September 1,
the poorest air quality indexes around Houston were
recorded (http://www.tceq.state.tx.us/compliance/monitoring/
air/monops/sigevents06.html).

2.2. Data Assimilation Method: EnKF

[10] The EnKF system used here is the same as that in the
work of Zhang et al. [2009], except for the addition of
parameter estimation. The parameter estimation version of
the EnKF updates the augmented state vector (regular state
variables plus parameters) simultaneously through the
covariances sampled by the ensemble forecasts when new
observations are assimilated. This EnKF uses the covariance
relaxation of Zhang et al. [2004] to inflate the analysis error
covariance at updated points via a weighted average
between the prior perturbation (denoted by superscript f)

and the posterior perturbation (denoted by superscript a) as
follows:

ðxanewÞ0 ¼ ð1� �ÞðxaÞ0 þ �ðx f Þ0 ð1Þ

The weighting coefficient, a, is set to 0.8 as in the work of
Zhang et al. [2009]. Unlike regular state variables whose
ensemble spread usually increases during forecasting, the
value of parameters in each ensemble member is kept con-
stant during each forecast cycle. For regular state variables,
covariance localization [Gaspari and Cohn, 1999] with
radius of influence set to 30 grid points is performed in the
full three‐dimensional physical space. Unlike regular state
variables, which are spatially variable, parameters to be
estimated are assumed to be globally uniform in the WRF
model. Contamination of the posterior estimate of the
parameter may also occur through accumulation of sampling
error during the update process if the number of observa-
tions is many orders of magnitude larger than the number of
parameters to be estimated [Aksoy et al., 2006a]. To avoid
this, the “spatial updating” method of Aksoy et al. [2006a]
was used here: first the parameters are updated horizontally
as a two‐dimensional array using localization, and then
spatial averaging is performed to obtain global parameter
values. Finally, the updated global parameter values are fed
into the subsequent forecast cycle. A 30‐member WRF
ensemble is coupled with the EnKF for all analysis/
forecasting cycles.
[11] In our parameter sensitivity experiments with ACM2

in WRF [Nielsen‐Gammon et al., 2010], two parameters
controlling the vertical mixing in the PBL in particular show
large and identifiable sensitivities, one for daytime (p, an
exponent affecting the magnitude and vertical distribution of
eddy diffusivity within the unstably stratified PBL) and one
for nighttime (Rc, a critical Richardson number determining
the transition between relatively large and small values of
eddy diffusivity). Thus p and Rc are chosen to be the
uncertain parameters to be estimated.
[12] The parameter p is shown to play the most important

role in controlling the vertical distribution of heat and
momentum during daytime [Nielsen‐Gammon et al., 2010].
In ACM2, p is taken to be 2. Among all parameters, Rc
causes the largest variability of wind speed (>1 m s‐1)
during nighttime around the level of nighttime low‐level jet
[Nielsen‐Gammon et al., 2010]. In ACM2, Rc is taken to be
0.25. The realistic ranges of parameter values are inferred to
be 1 < p < 3 and 0.1 < Rc < 1.0 by Nielsen‐Gammon et al.
[2010]. In order to constrain the model parameters to lie
within their physically realistic ranges, a parameter trans-
formation technique [Nielsen‐Gammon et al., 2010] is used to
transform any model parameter x to a normal parameter y by

x ¼ Aþ 0:5þ arctan yð Þ
�

� �
B� Að Þ ð2Þ

With this formulation, y varies from +/− infinity while x
varies within the range [A:B]. Parameter estimation is per-
formed on y, and y is transformed to x prior to its use in
ACM2 for WRF model integrations.
[13] In the initial ensemble forecasting period (1200 UTC

August 29‐0000 UTC August 30), two sets of 30 pseudo‐
random values drawn from a normal distribution with zero
mean and a standard deviation of 1.0 are generated for p and
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Rc. The 30 pseudo‐random values are then transformed to
the specific range of each parameter using (2). A different
transformed set of parameter values is used in each member
of the WRF ensemble. The parameter values are updated
simultaneously with state variables when new observations
are assimilated.
[14] Since these two PBL parameters primarily control

mixing in the PBL, assimilated observational data that
include information regarding the vertical distribution of state
variables are particularly valuable [Nielsen‐Gammon et al.,
2010]. Here, radar wind profiler data from the TexAQS‐II
network [Parrish et al., 2009] are assimilated starting from
0000 UTC 30 August through 0600 UTC 2 September every
six hours. Most profiler data are from 915 MHz profilers
except for three tropospheric profilers at Jayton (JTN),
Ledbetter (LDB), and Palestine (PAT) that provide rela-
tively coarse data up to 16 km. Radar wind profilers oper-
ating at 915 MHz provide high‐density wind data in the
PBL and the lower free troposphere.
[15] Four experiments are conducted, which include (1) a

deterministic WRF forecast without data assimilation
(“NoDA”), (2) assimilation of profiler observations with
the EnKF but without parameter estimation (“NoPE”),
(3) simultaneous state and parameter estimation with the EnKF
using the parameter transformation technique (“SSPE”),
and (4) a deterministic WRF forecasting as in NoDA but
with updated values of p and Ri estimated from SSPE

(“NoDAnew”). Model output intercomparisons and diag-
noses are carried out on the innermost (12 km) domain.
Validation is performed against the dependent radar wind
profiler data set and against independent surface observa-
tions of wind and temperature.

3. Results

[16] Figure 1a shows the time evolution of the mean bias
and root mean square error (RMSE) of the 2‐m temperature
(T2) with respect to the unassimilated hourly observations at
the 204 National Weather Service and Federal Aviation
Administration (NWS/FAA) sites simulated by the ensemble
means in experiments NoDA, NoPE, SSPE, and NoDAnew.
At the beginning of all simulations, the bias and RMSE of
simulated T2 are relatively small. A cold bias appears during
the following day and increases on subsequent days. Among
all experiments, NoDA shows the largest cold bias and cold
drift. NoPE shows significant improvement over NoDA in
terms of both bias and RMSE, which means assimilating
wind profiler data benefited temperature prediction sub-
stantially. The SSPE experiment achieved the smallest cold
bias and RMSE of all experiments. NoDAnew performed
worse than NoPE and SSPE but better than NoDA. Differ-
ences in performance between SSPE and NoPE clearly show
the benefit of parameter estimation beyond state estimation
with the EnKF.

Figure 1. Mean bias of 2 m temperature over (a) NWS/FAA sites from NoDA (deterministic forecasting), NoPE (EnKF
but no PE), SSPE (simultaneous state and parameter estimation with EnKF), NoDAnew (deterministic forecasting with
estimated p and Ri from SSPE) and estimated (b) p and (c) Rc by SSPE. The dashed lines in Figures 1b and 1c show the
standard deviation of parameter spread and a straight dashed line is drawn at the default values of p and Rc.
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[17] The time evolution of the two uncertain parameters
(p and Rc) estimated by experiment SSPE is shown in
Figures 1b–1c. SSPE estimated p to be lower than its default
value 2.0 throughout the experiment except for 18 CST
29 August and estimated Rc to be always higher than its
default value of 0.25. The ensemble parameter spread
decreases throughout the period, but slowly enough that the
spread still spans a large portion of the expected uncertainty.
[18] The ending values of p and Rc from SSPE were 1.59

and 0.77, respectively. The change in p has the consequence
of causing a 33% increase in the local mixing coefficient at
the midpoint of the convective boundary layer, with larger
increases near its top. The change in Rc permits much more
vigorous mixing under stable stratification near the shear
instability threshold, but has no direct effect on the vertical
mixing coefficient beyond Ri = 0.77.
[19] In NoDAnew, the parameters p and Rc were updated

every 6 hours using the estimated values from SSPE during
the preceding 6‐hour analysis cycle (as in SSPE). NoDAnew
consistently outperformed NoDA (Figure 1a) and at times
achieved reductions of bias and RMSE similar to that

achieved through standard EnKF data assimilation (NoPE).
This forecast improvement, purely from the use of new fixed
parameter values, suggests the promising possibility of using
the EnKF and state observations to tune parameter values to
obtain better‐performing physics parameterizations. Given
the slow changes of both parameter values from one analysis
cycle to the next (Figure 1b), we speculate similar perfor-
mance would be obtained if we updated the parameter values
with the SSPE estimation from the same analysis cycle.
[20] A cold drift in deterministic WRF forecasts of this

period (with a different boundary‐layer scheme) is also
reported byWilczak et al. [2009] for simulations over Texas,
accompanied by too strong northerly winds and/or too weak
southerly winds. During our simulation period, the dominant
large scale flow over Texas is a northerly wind, with a
northerly jet present immediately above the PBL over
eastern Texas. The cold drift of our simulations may be
partially caused by the simulated too strong northerly wind,
producing too much cold advection. An example of errors in
the simulated winds is shown in Figure 2. In Figure 2b, the
deterministic forecast predicts that northerly winds should

Figure 2. Wind vectors at September 1, 10 CST at 10 m AGL from (a) observations, (b) NoDA (deterministic forecast),
(c) NoPE (EnKF but no PE), and (d) SSPE (simultaneous state and parameter estimation with EnKF). The shaded color is
the magnitude of wind speed.
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dominate over eastern Texas at 10 CST, September 1.
However, according to the independent observations shown
in Figure 2a, some local sea breezes have developed along
the southern Texas coast. The winds near Corpus Christi are
mainly easterly/southeasterly and the wind near San Antonio
is southerly or southwesterly. As seen in Figure 1, the EnKF
assimilation without parameter estimation (NoPE) did reduce
the cold bias to some extent, apparently from improved
boundary‐layer wind representation. For example, the NoPE
run produces a wind pattern over southern Texas (Figure 2c)
that is somewhat similar to what was observed (Figure 2a),
although substantial differences still exist (e.g., the observed
wind at San Antonio is southerly while the wind simulated
by NoPE is westerly).
[21] A cold bias can also be caused directly by a simulated

PBL that is too shallow. Indirectly, a shallow PBL may

cause an underestimation of the magnitude of surface drag,
thereby causing the prevailing boundary‐layer northerly
winds to be too strong. Parameter sensitivity tests on ACM2
conducted by Hu et al. [2010] showed that the daytime PBL
height is sensitive to the value of the parameter p. Other
tests have shown that wind speed has large covariance with
p and has the largest sensitivity to p near the top of the PBL
[Nielsen‐Gammon et al., 2010]. A large difference between
the first‐guess and observed wind near the top of the day-
time PBL would therefore cause a large increment of p in
SSPE, thereby altering the daytime PBL depth and tem-
peratures within the PBL.
[22] Figure 3 shows the mean wind speed profiles at 12

and 14 CST on both August 30 and September 1 over the
10 profilers sites that have the most complete observations
(Brenham (BHM), Beeville (BVL), Cleburne (CLE),

Figure 3. Mean wind speed profile over 10 central and eastern Texas profiler sites at 12, 14 CST (row 1–2) and mean
temperature profile over NWS/FAA sites at 14 CST (row 3), August 30 and September 1 from observations (Obs) and
model experiments NoDA (deterministic forecast), NoPE (EnKF but no PE), SSPE (simultaneous state and parameter
estimation with EnKF), and NoDAnew (deterministic forecast with estimated p and Ri from SSPE).
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Huntsville (HVE), Jefferson County (JEF), Ledbetter
(LDB), LaPorte (LPT), Longview (LVW), Moody (MDY),
and Palestine (PAT)) in comparison with estimations from
experiments NoDA, NoPE, SSPE and NoDAnew. In the
EnKF runs NoPE and SSPE, data assimilation takes place at
12 CST and the 14 CST output represents a 2‐h forecast. A
wind maximum is apparent on both days at about 2500–
3000 m (as well as August 31, not shown). Below the jet, a
layer of near‐uniform wind speed, signifying the daytime
mixed layer, is present up to 1500–1800 m. The determin-
istic forecast NoDA overpredicts wind speed substantially in
the PBL on all three days. Experiment NoPE, with state
estimation only, has much‐improved wind speeds in the
PBL, but the wind speeds at the top of and above the PBL
are still overpredicted.
[23] Since smaller p leads to stronger mixing and lower

wind speeds near the top of PBL [Hu et al., 2010; Nielsen‐
Gammon et al., 2010], SSPE should cause the estimated
value of p to decrease. Indeed, p is estimated to be lower
than its default value of 2.0 except for 18 CST, August 29,
and the lowest values (∼1.5–1.6) in SSPE occur while
daytime observations are assimilated (Figure 1). With lower
values of p, a deeper PBL and a higher and weaker jet above
the PBL are simulated by SSPE (Figure 3). Since the large‐
scale northerly flow is reduced and the wind maximum is

farther above the ground, local‐scale circulations can develop
more easily. SSPE produces surface winds with patterns that
agree best with independent observations, with a south-
easterly wind at Corpus Christi and a southwesterly wind at
San Antonio (Figure 2d). In NoDAnew, using the SSPE‐
estimated p and Rc values, a deeper PBL and a higher and
weaker jet above the PBL are simulated (Figure 3) and
consequently the southerly wind in southern TX is more
prominent (not shown). Since SSPE predicts a deeper PBL,
air is entrained from higher altitudes, warming the PBL
as seen in the temperature profile in the bottom row of
Figure 3. This effect combines with the reduced transport of
cooler air from the north to reduce the cold bias at the
surface (Figure 1a).
[24] The wind speed in the lower troposphere predicted by

NoDA is also too strong at night (Figure 4). NoPE produces
a small but systematic improvement, while SSPE again
produces the best agreement with observations below
1000m. Larger values of Rc (>0.5, compared to the default
value of 0.25) are estimated during nighttime by SSPE as
seen in Figure 1, increasing the vertical mixing and reducing
the nighttime low level jet (LLJ). Consequently the larger
Rc causes stronger nighttime mixing and increased surface
temperatures (Figure 4a), thereby reducing the model’s cold
bias (Figure 1). Thus SSPE gives the best performance for
both wind and temperature during both daytime and night-
time at most levels and times. The use of SSPE‐estimated
parameters in NoDAnew leads to less bias in predictions of
nighttime winds and temperatures (Figures 1 and 4) than
NoDA.

4. Conclusions and Discussion

[25] The EnKF is used here to estimate the flow‐dependent
optimal values of two parameters fundamental to the per-
formance of the ACM2 PBL scheme in the WRF model
through the state vector augmentation method. Simulations
are conducted for the period 1200 UTC August 29, 2006
to 0600 UTC September 2, 2006 over Texas using WRF
deterministic forecasts, conventional EnKF, EnKF with
parameter estimation, and WRF deterministic forecasts with
estimated parameters. The EnKF simulations assimilate
radar wind profiler observations every six hours. A cold drift
is found in the WRF deterministic forecasts that is suspected
to be partly caused by northerly winds simulated to be too
strong and a daytime PBL simulated to be too shallow.
Conventional EnKF improves the wind fields somewhat
and produces an improvement in temperatures. Parameter‐
estimation EnKF results in a much greater reduction in the
model biases of both wind and temperature. Also, pure
forecasts with updated parameters outperform forecasts with
standard parameter settings.
[26] Despite the improvement, some biases remain. It is

possible that the underlying cause of the model error is not
the PBL scheme at all but rather some other simulated
physical process, in which case parameter estimation is
producing the right answer for the wrong reasons. One such
source of error that may be masked by adjustments to the
PBL scheme are errors in land surface characteristics, such
as moisture availability. Application of parameter estimation
to include other empirical or uncertain parameters in the
PBL and/or other physics parameterization schemes may
produce additional improvement. It is also possible that the

Figure 4. (a) Mean profiles of potential temperature at
5 CST, August 30 over NWS/FAA sites from model experi-
ments and (b) mean wind speed profiles at the same time over
profiler sites from observations and model experiments.
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absence of strong chaotic dynamics in the PBL in some
circumstances may adversely affect the EnKF/SSPE per-
formance [e.g., Hacker and Snyder, 2005]. Nevertheless,
with the configuration of WRF employed here and this
particular simulated episode, parameter estimation produces
better analyses and more realistic simulations when measured
against both dependent and independent data. Ongoing and
future research will examine the consistency and effective-
ness of parameter estimations for other events, including the
additional estimation of other uncertain parameters in the
forecast model.

[27] Acknowledgments. This work was supported by the State of
Texas through a contract from the Houston Advanced Research Center,
the Texas Environmental Research Consortium, the Texas Commission
on Environmental Quality, and the National Science Foundation grant
ATM‐0840651. Yonghui Weng assisted us with implementation of the
parameter estimation EnKF.

References
Aksoy, A., F. Zhang, and J. W. Nielsen‐Gammon (2006a), Ensemble‐
based simultaneous state and parameter estimation with MM5, Geophys.
Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

Aksoy, A., F. Zhang, and J. W. Nielsen‐Gammon (2006b), Ensemble‐
based simultaneous state and parameter estimation in a two‐dimensional
sea‐breeze model, Mon. Weather Rev., 134, 2951–2970, doi:10.1175/
MWR3224.1.

Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh (2005a),
Parameter estimation in an intermediate complexity earth system model
using an ensemble Kalman filter, Ocean Modell., 8, 135–154,
doi:10.1016/j.ocemod.2003.12.004.

Annan, J. D., J. D. Lunt, J. C. Hargreaces, and P. J. Valdes (2005b), Param-
eter estimation in an atmospheric GCM using the ensemble Kalman filter,
Nonlinear Processes Geophys., 12, 363–371.

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi‐
geostrophic model using Monte Carlo methods to forecast error statistics,
J. Geophys. Res., 99, 10,143–10,162, doi:10.1029/94JC00572.

Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation
and practical implementation, Ocean Dyn., 53, 343–367, doi:10.1007/
s10236-003-0036-9.

Gaspari, G., and S. E. Cohn (1999), Construction of correlation functions in
two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723–757,
doi:10.1002/qj.49712555417.

Hacker, J. P., and C. Snyder (2005), Ensemble Kalman filter assimilation of
fixed screen‐height observations in a parameterized PBL, Mon. Weather
Rev., 133, 3260–3275, doi:10.1175/MWR3022.1.

Hamill, T. M. (2006), Ensemble‐based atmospheric data assimilation,
in Predictability of Weather and Climate, edited by T. Palmer and
R. Hagedorn, chap. 6, pp. 124–156, Cambridge Univ. Press, Cambridge,
U. K.

Hansen, J. A. (2002), Accounting for model error in ensemble‐based state
estimation and forecasting, Mon. Weather Rev., 130, 2373–2391,
doi:10.1175/1520-0493(2002)130<2373:AFMEIE>2.0.CO;2.

Hansen, J., and C. Penland (2007), On stochastic parameter estimation
using data assimilation, Physica D, 230, 88–98, doi:10.1016/j.physd.2006.
11.006.

Hu, X.‐M., J. W. Nielsen‐Gammon, and F. Zhang (2010), Evaluation of
three planetary boundary layer schemes in the WRF model, J. Appl.
Meteorol. Climatol., in press.

Kondrashov, D., C.‐J. Sun, and M. Ghil (2008), Data assimilation for a
coupled ocean‐atmosphere model. Part II: Parameter estimation, Mon.
Weather Rev., 136, 5062–5076, doi:10.1175/2008MWR2544.1.

Meng, Z., and F. Zhang (2007), Test of an ensemble Kalman filter for
mesoscale and regional‐scale data assimilation. Part II: Imperfect model
experiments, Mon. Weather Rev., 135, 1403–1423, doi:10.1175/
MWR3352.1.

Nielsen‐Gammon, J. W., X.‐M. Hu, F. Zhang, and J. E. Pleim (2010),
Evaluation of planetary boundary layer scheme sensitivities for the
purpose of parameter estimation, Mon. Weather Rev., in press.

Parrish, D. D., et al. (2009), Overview of the Second Texas Air Quality
Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition
and Climate Study (GoMaACCS), J. Geophys. Res., 114, D00F13,
doi:10.1029/2009JD011842.

Pleim, J. E. (2007a), A combined local and nonlocal closure model for the
atmospheric boundary layer. Part I: Model description and testing,
J. Appl. Meteorol. Climatol., 46, 1383–1395, doi:10.1175/JAM2539.1.

Pleim, J. E. (2007b), A combined local and nonlocal closure model for the
atmospheric boundary layer. Part II: Application and evaluation in a
mesoscale meteorological model, J. Appl. Meteorol. Climatol., 46,
1396–1409, doi:10.1175/JAM2534.1.

Rappenglück, B., R. Perna, S. Zhong, and G. A. Morris (2008), An analysis
of the vertical structure of the atmosphere and the upper‐level meteorology
and their impact on surface ozone levels in Houston, Texas, J. Geophys.
Res., 113, D17315, doi:10.1029/2007JD009745.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers (2005), A description of the advanced
research WRF version 2, Tech. Note NCAR/TN‐468+STR, Natl. Cent.
for Atmos. Res., Boulder, Colo.

Stuart, A. L., A. Aksoy, F. Zhang, and J. W. Nielsen‐Gammon (2007),
Ensemble‐based data assimilation and targeted observation of a chem-
ical tracer in a sea breeze model, Atmos. Environ., 41, 3082–3094,
doi:10.1016/j.atmosenv.2006.11.046.

Tong, M., and M. Xue (2008), Simultaneous estimation of microphysical
parameters and atmospheric state with simulated radar data and ensemble
square root Kalman filter. Part II: Parameter estimation experiments,
Mon. Weather Rev., 136, 1649–1668, doi:10.1175/2007MWR2071.1.

Wilczak, J. M., I. Djalalova, S. McKeen, L. Bianco, J.‐W. Bao, G. Grell,
S. Peckham, R. Mathur, J. McQueen, and P. Lee (2009), Analysis of
regional meteorology and surface ozone during the TexAQS II field pro-
gram and an evaluation of the NMM‐CMAQ and WRF‐Chem air quality
models, J. Geophys. Res., 114, D00F14, doi:10.1029/2008JD011675.

Zhang, F., and C. Snyder (2007), Ensemble‐based data assimilation, Bull.
Am. Meteorol. Soc., 88, 565–568, doi:10.1175/BAMS-88-4-565.

Zhang, F., C. Snyder, and J. Sun (2004), Tests of an ensemble Kalman filter
for convective‐scale data assimilation: Impact of initial estimate and
observations, Mon. Weather Rev., 132, 1238–1253, doi:10.1175/1520-
0493(2004)132<1238:IOIEAO>2.0.CO;2.

Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop (2009),
Cloud‐resolving hurricane initialization and prediction through assimila-
tion of Doppler radar observations with an ensemble Kalman filter:
Humberto (2007), Mon. Weather Rev., 137, 2105–2125, doi:10.1175/
2009MWR2645.1.

X.‐M. Hu and F. Zhang, Department of Meteorology, Pennsylvania State
University, University Park, PA 16802, USA.
J. W. Nielsen‐Gammon, Department of Atmospheric Sciences, Texas

A&M University, College Station, TX 77843, USA.

HU ET AL.: MESOSCALE REAL‐DATA PARAMETER ESTIMATION L08802L08802

7 of 7



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


