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ABSTRACT

This paper investigates the effects of spatial filtering on the ensemble-based estimate of the background

error covariance matrix in an ensemble-based Kalman filter (EnKF). In particular, a novel kernel smoothing

method with variable bandwidth is introduced and its performance is compared to that of the widely used

Gaspari–Cohn filter, which uses a fifth-order kernel function with a fixed localization length. Numerical

experiments are carried out with the 40-variable Lorenz-96 model. The results of the experiments show that

the nonparametric approach provides a more accurate estimate of the background error covariance matrix

than the Gaspari–Cohn filter with any localization length. It is also shown that the Gaspari–Cohn filter tends

to provide more accurate estimates of the covariance with shorter localization lengths. However, the analyses

obtained by using longer localization lengths tend to be more accurate than those produced by using short

localization lengths or the nonparametric approach. This seemingly paradoxical result is explained by

showing that localization with longer localization lengths produces filtered estimates whose time mean is the

most similar to the time mean of both the unfiltered estimate and the true covariance. This result suggests that

a better metric of covariance filtering skill would be one that combined a measure of closeness to the sample

covariance matrix for a very large ensemble with a measure of similarity between the climatological averages

of the filtered and sample covariance.

1. Introduction

Atmospheric data assimilation is the process of esti-

mating the spatiotemporally evolving state of the at-

mosphere based on observations. The resulting state

estimate at a given time is called analysis. Modern data

assimilation algorithms obtain the analysis by a statistical

interpolation process: the analysis is computed by updat-

ing an a priori estimate of the state, called background,

based on the observed information assuming that the

background and observation errors are random variables

with known statistical parameters (Daley 1991; Kalnay

2003). In particular, the data assimilation schemes, which

are able to handle the large number of state variables and

observations in a realistic operational or research appli-

cation, assume that the probability distribution of the
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background and observation errors is a multivariate nor-

mal distribution with a known covariance matrix. The

focus of this paper is on the estimation of the covariance

matrix that describes the distribution of the background

error. This matrix is called the background error co-

variance matrix and we denote it by Pb.

Sequential data assimilation schemes use a short-term

forecast started from the analysis of the previous analysis

time as background. Thus, Pb is an M 3 M matrix, where

M is the number of gridpoint variables in the model. The

entries pb
uy(u, y 5 1, . . . , M) of Pb describe the presumed

covariance between the errors «b
u and «b

y in the xb
u and

xb
y components of the background xb. Each diagonal el-

ement pb
uu(u 5 1, . . . , M) represents the variance of the

error for a scalar model variable (e.g., temperature, sur-

face pressure, a component of the wind vector) at a given

model grid point, while the off-diagonal elements repre-

sent the covariance between the errors in the estimate

of the same state variable at different locations and be-

tween the errors in the estimate of the different state

variables (e.g., temperature and meridional component

of the wind vector) at the same or different locations.

Hence, a physical distance, denoted by ju 2 yj, can be

defined for each covariance pb
uy with the distance between

the physical locations of the two state vector components

for which pb
uy describes the statistical relationship be-

tween the state estimation errors. (For the diagonal en-

tries and the entries that describe the covariance between

variables at the same location, ju 2 yj 5 0.)

An estimate of Pb is usually obtained in two steps; first

computing a sample covariance matrix

P̂b 5
1

K 2 1
�
K

k51
Xb(k)[Xb(k)]T, (1)

where fXb(k): k 5 1, . . . , Kg is a K-member sample of

the background error; then filtering the sampling noise

by a statistical postprocessing of P̂b (e.g., Berre and

Desroziers 2010). In this paper, we restrict our attention

to the estimation of Pb in ensemble-based Kalman filter

(EnKF) schemes. In such schemes, fXb(k): k 5 1, . . . , Kg
is obtained by first integrating the model from a

K-member ensemble of analyses for the previous

analysis time to obtain a background ensemble fXb(k):

k 5 1, . . . , Kg; then, taking the difference between the

members of the background ensemble and the back-

ground mean

xb 5
1

K
�
K

k51
xb(k), (2)

to obtain fXb(k) 5 xb(k) 2 xb: k 5 1, . . . , Kg.
Because of the large computational expense asso-

ciated with an ensemble of model integrations, the

computationally affordable sample size is limited; for

example, the typical value of K in a practical appli-

cation is between 20 and 100 (e.g., Houtekamer and

Mitchell 2005; Hamill 2006). The small ensemble size

K poses two important challenges for the statistical

postprocessing algorithm that provides the final estimate
~Pb of Pb based on P̂b. First, statistical fluctuations in a

small ensemble fXb(k): k 5 1, . . . , Kg lead to a low sig-

nal-to-noise ratio for those entries of P̂b that estimate

small entries of Pb, which makes filtering the sample

noise challenging. This problem typically occurs for en-

tries pb
uy for which the distance ju 2 yj is large. Second,

P̂b is a highly rank-deficient estimate of Pb (K � M),

because the typical dimension of the state vector in

a state-of-the-art atmospheric model is M 5 105–108.

Practical implementations of the EnKF address the

aforementioned two problems by applying a physical-

distance-dependent stationary (time independent) filter

function to the sample covariances (e.g., Houtekamer

and Mitchell 1998, 2001; Hamill et al. 2001; Anderson

2001; Ott et al. 2004). This approach is called localiza-

tion, because it forces the covariance to zero beyond

a prescribed distance d. Some localization functions

do not change the sample-based estimate p̂b
uy of the

covariance when the distance ju 2 yj associated with

the pair of state vector components is smaller than d,

but replaces p̂b
uy with zero when ju 2 yj $ d (e.g.,

(Houtekamer and Mitchell 1998; Ott et al. 2004;

Szunyogh et al. 2005, 2008; Hunt et al. 2007); other lo-

calization functions taper the covariance to zero grad-

ually with increasing distance ju 2 yj (e.g., Houtekamer

and Mitchell 2001; Hamill et al. 2001). Such tapering

functions modify all entries of the sample covariance

matrix, except for the diagonal elements. Experience

with the different EnKF algorithms and localization

strategies suggests that tapering greatly increases the

accuracy of the analyses, especially when the size of the

ensemble is small (e.g., Houtekamer and Mitchell 2005;

Hamill 2006) or in the presence of model error (e.g.,

Zhang et al. 2009b).

While there exist dynamical arguments to support

localization (Yoon et al. 2010) and it may formally solve

the problems it is designed to address,1 the particular

shape of the tapering function is typically selected based

on intuition. Moreover, if the true covariance struc-

ture of the system is complex and does not decrease

monotonically with distance, the localized sample co-

variance may not be a good fit to the true covariance

1 Localization also makes the data assimilation algorithms more

suitable for implementation on massively parallel computer ar-

chitectures.
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structure. The ad hoc nature of most localization algo-

rithms used in the literature motivates us to start ex-

ploring the effects of covariance filtering on the

performance of the EnKF in a more systematic way. In

particular, we compare the results obtained with local-

ization to the results obtained with an adaptive non-

parametric method to estimate the entries of Pb. The

property that makes such a nonparametric method

particularly suitable for our study is that, instead of an ad

hoc choice, the shape of the localization function and the

distance at which it becomes zero is determined from the

sample itself. We are aware of only two earlier attempts

at adaptively determining the localization distance: the

hierarchical filter of Anderson (2007) estimates the lo-

calization function using an ensemble of ensembles,

while the adaptive localization approach in Bishop and

Hodyss (2007) and the ensemble correlations raised to

a power (ECO-RAP) approach of Bishop and Hodyss

(2009a,b) propagate and adapt the width of the lo-

calization by computing powers of the sample correla-

tions. Zhang et al. (2009a), on the other hand, proposed

a successive covariance localization (SCL) method that

uses several different localization distances to account

for different physical scales in the background error

covariance.

The rest of the paper is organized as follows. Section 2

is a formal description of covariance filtering in EnKF.

Section 3 explains the design of the data assimilation

runs that provide the data for our quantitative inves-

tigations. This section includes a brief description of

the particular implementation of the serial square root

EnKF scheme of Whitaker and Hamill (2002) on the

Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel

1998), which we use to carry out all data assimilation

experiments described in this paper. In section 4, we

explain the nonparametric statistical method we use to

estimate the covariance, while in section 5 we compare

the performance of a standard localization method to

that of the nonparametric scheme in estimating the

background covariance. Then, in section 6, we compare

the performance of the different filtering strategies by

numerical experiments. Our conclusions are drawn in

section 7.

2. Covariance filtering in EnKF

In this section, we illustrate the process of estimating

Pb in an ensemble-based data assimilation system with

the help of the algorithm introduced in Whitaker and

Hamill (2002). We choose this particular algorithm be-

cause it allows for a straightforward implementation of

distance-dependent filtering of the covariance. It also

performs well for small ensemble sizes, which makes

it an ideal scheme for testing the effects of distance-

dependent filtering. Later in the paper, we use an im-

plementation of this algorithm on the Lorenz-96 model.

While all matrices, vectors, and scalars described in this

section are dependent on the analysis time, we do not

indicate this time dependence in our notation, as all

operations are carried out at the same analysis time.

a. The EnKF algorithm of Whitaker and
Hamill (2002)

In the extended Kalman filter (Jazwinski 1970), the

background is updated with the equation

xa 5 xb 1 K[yo 2H(xb)], (3)

where the Kalman-gain matrix K is defined by

K 5 PbHT(HPbHT1 R)21. (4)

In Eq. (3), the M-vector xa is the analysis; H(�) is the

observation operator, that is, H(xb) is the prediction

of the observations based on the background; H is the

matrix that represents the linearization ofH(�) about xb;

and R is the observation error covariance matrix.

In an EnKF, xb is replaced with the ensemble mean

xb and the result of Eq. (3) is the ensemble mean

analysis xa. In addition to the ensemble mean analysis,

an EnKF also computes the ensemble of analysis

perturbations fXa(k): k 5 1, . . . , Kg, which then can

be added to the analysis mean to obtain the ensemble

of analyses, fxa(k) 5 xa 1 Xa(k): k 5 1, . . . , Kg. EnKF

schemes generate the ensemble of analysis pertur-

bations, fXa(k): k 5 1, . . . , Kg, such that they satisfy

the condition

P̂a 5
1

K 2 1
�
K

k51
Xa(k)[Xa(k)]T, where (5)

P̂a 5 (I 2 KH)P̂b (6)

is the ensemble-based estimate of the analysis error co-

variance matrix.2

The algorithm of Whitaker and Hamill (2002) is a

serial algorithm, that is, the observations are assimi-

lated one by one, serially updating the mean analysis

xa and the ensemble of analysis perturbation fXa(k):

k 5 1, . . . , Kg. To simplify the notation, we describe

the algorithm for the case when each model variable is

2 The set of analysis perturbations that satisfies this condition is

not uniquely defined.
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directly observed by a single observation3 and the er-

rors in the observations of the different components of

the state vector are uncorrelated. We index each ob-

servation with the index of the variable it observes, that

is, the observation of xu is yo
u. For the particular con-

figuration of the observing network, the component

Hu(xb) of the observation operator for yo
u is

xb
u 5Hu(xb). (7)

Each observation yo
u is assimilated by the

xa 5 xb 1 ku(yo
u 2 xb

u), (8)

equivalent of Eq. (3) for a single observation, where the

vector

ku 5 pb
u(pb

uu 1 ruu)21 (9)

is the Kalman-gain associated with the observation of xu.

In Eq. (9), the components of the vector pb
u are defined

by the covariance between the error «b
u and the errors

«b
y (y 5 1, . . . , M), pb

uu is the variance of «b
u, and ruu is the

observation error variance for the observation yo
u. The

analysis perturbations are updated by

Xa(k) 5 Xb(k) 2 X
b(k)
u

~ku, k 5 1, . . . , K, where (10)

~ku 5 aku, a 5 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruu

pb
uu 1 ruu

s !21

. (11)

b. Covariance filtering

In the computational algorithm defined by Eqs. (8)–

(11), the background error covariance enters in Eq. (9)

through pb
u. A distance-dependent filtering, for exam-

ple, localization, can be implemented by filtering the

pb
uy(y 5 1, . . . , M) components of pb

u based on the dis-

tance ju 2 yj.
A potential problem with covariance filtering is that it

produces an analysis ensemble, fXa(k): k 5 1, . . . , Kg,
that is not fully consistent with the background error

covariance used in the computation of the Kalman gain:

while the Kalman gain is computed based on the filtered

estimate ~Pb [see Eq. (4)], the Kalman gain is applied

to the sample covariance matrix P̂b to compute the

ensemble perturbations, fXa(k): k 5 1, . . . , Kg [by Eq.

(6) in a square root filter]. While the effects of this in-

consistency on the accuracy of the analysis cannot be

predicted based on strictly theoretical considerations,

the fact that it exists suggests that a filtering algorithm

that provides a more accurate estimate of Pb does not

necessarily produce a more accurate analysis.

c. Covariance inflation

In a square root EnKF scheme, such as the algorithm of

Hamill and Whitaker (2005), the diagonal entries of the

sample covariance matrix P̂b tend to underestimate the

diagonal entries of Pb (the variance). There are different

ways to account for the underestimation of the variance

in EnKF (e.g., Hamill and Whitaker 2005). The common

feature of these techniques is that they increase the

magnitude of the background ensemble perturbations

fXb(k): k 5 1, . . . , Kg. The most popular approach,

which is also the one used in this paper, is to multiply

each background perturbations by a r . 1 variance in-

flation factor. This approach is called multiplicative

variance inflation and was introduced in Anderson and

Anderson (1999). It should be noted that the multiplica-

tive variance inflation increases not only the diagonal

elements of P̂b, but also the off-diagonal ones. Therefore,

the variance inflation also inflates the covariance esti-

mates in the ~Pb-filtered estimate of the covariance matrix.

3. Experiment design

In this section, we briefly introduce the Lorenz-96

model and our approach to generate the time evolving

‘‘true’’ states and the simulated observations of the

‘‘true’’ states.

a. The Lorenz-96 model

The governing equation of the Lorenz-96 model is the

dx
y
(t)

dt
5 [x

y11(t) 2 x
y22(t)]x

y21(t) 2 x
y
(t) 1 F, (12)

system of ordinary differential equations for M 5 40

scalar variables xy, y 5 1, . . . , M; where xM11(t) 5 x1(t),

x21(t) 5 xM21(t), x0(t) 5 xM(t), and F is a constant

forcing term. While a partial differential equation to

which Eq. (12) would be a finite-dimensional approxi-

mation is not known to exist, the variables xy, y 5 1, . . . ,

40 are usually thought of as gridpoint values of a scalar

atmospheric variable along a latitude circle. Using this

analog, the time evolution of the model for F 5 8 re-

sembles the propagation of a wavenumber 8 dispersive

wave characterized by a westward (in the direction of

decreasing y) phase speed and an eastward (in the di-

rection of increasing y) group velocity. The model is

chaotic: it has 13 positive Lyapunov exponents and its

Lyapunov dimension is 27.1 (Lorenz and Emanuel

3 This assumption is solely made to simplify the notation and has

no effect on the generality of our results.

SEPTEMBER 2011 J U N E T A L . 3039



1998). Thus, in the Lorenz-96 model, similar to the sit-

uation in the storm-track regions in an NWP model, the

spatiotemporal evolution of the uncertainties is gov-

erned by unstable dispersive waves and accurate es-

timates of the state over an extended time period can be

obtained only by the frequent assimilation of observa-

tions. In spite of its skill in mimicking an important

feature of the propagation of state estimation errors in

realistic models of the atmosphere, the Lorenz-96 model

is a highly idealized analog of a realistic atmospheric

model. Most importantly, the spatial correlations be-

tween xv at the different ‘‘grid points’’ does not change

smoothly with distance as in a realistic model.4 We

choose the Lorenz-96 model because (i) its low dimen-

sionality allows us to test a computationally relatively

expensive nonparametric scheme to filter the ensem-

ble-based estimate of the covariance; (ii) filtering the

ensemble-based covariance by localization has a well-

documented positive effect on the accuracy of the anal-

yses for this model (Whitaker and Hamill 2002); and

(iii) this model has an excellent track record in pro-

viding the initial test environment for EnKF schemes

(e.g., Whitaker and Hamill 2002; Ott et al. 2004; Zhang

et al. 2009b), which later proved competitive with the

state-of-the-art data assimilation schemes of the oper-

ational centers.

b. Generation of the time series of ‘‘true’’ states
and the observations

We solve Eq. (12) using a fourth-order Runge–Kutta

time integration scheme and a time step of 0.05 di-

mensionless time unit. This time unit is defined by the

e-folding time of the dissipation in the model (e.g.,

Lorenz and Emanuel 1998). Assuming that the e-folding

time of dissipation in the atmosphere is about 5 days, the

time of 0.05 dimensionless time unit is equivalent to

about 6 h in real time. We carry out all numerical ex-

periments under the perfect model hypothesis, gener-

ating the ‘‘true’’ state space trajectory with a long time

integration of the model. The initial condition for this

integration is obtained by adding small-magnitude ran-

dom noise to the unstable steady-state solution xu 5 0,

u 5 1, . . . , M; then, discarding the initial transient part

of the trajectory (first 1000 time steps) and defining the

true states xt(t) with the states along the remaining

portion of the trajectory. Simulated observations are

generated for each time step by adding normally dis-

tributed random noise with expectation zero and stan-

dard deviation 1 to each variable xu, u 5 1, . . . , M. That

is, the observation error covariance matrix R is the

identity I.5 We estimate the state at each observation

time by assimilating the simulated observations with the

algorithm described by Eqs. (8)–(11).

4. Statistical methodology

We now introduce a nonparametric statistical method

to estimate the covariance matrix, which is computa-

tionally feasible but alleviates some of the potential

problems with the sample and the localized sample co-

variance matrices. We first review some terminologies in

spatial statistics, then introduce the nonparametric

scheme, gradually relaxing the assumptions we make

about the covariances. We illustrate our main points

with quantitative results for the Lorenz-96 model. In

these calculations, we use a sample covariance matrix

based on a K 5 5000 member ensemble, which we de-

note by P̂
b

5000, as a proxy for the true covariance matrix

Pb. We obtain P̂
b

5000 by running the EnKF data assimi-

lation system for 200 analysis steps using a set of initial

ensemble members, which was generated by adding

Gaussian random noise, with mean zero and standard

deviation F/10, to the unstable steady-state solution xu 5 0,

u 5 1, . . . , M; then, choosing P̂b from the last analysis

step to be P̂
b

5000. For this calculation, we use a weak co-

variance inflation factor, r 5 1.005, because the primary

role of variance inflation for such a large ensemble un-

der the perfect model scenario is to compensate for the

effects of nonlinearities in the model dynamics.

a. Terminology

We introduce the notation «b 5 («b
1 , «b

2, . . . , «b
M) for

the random vector, whose components are the back-

ground errors for the different state variables. In spatial

statistics, we say that the process is nonstationary in

space, when pb
uy 5 Covf«b

u, «b
yg depends on the two lo-

cations u and y. When the mean is constant and the

covariance depends on the locations only through the

difference of the two locations, that is, C
1
(u 2 y) 5

Covf«b
u, «b

yg for an appropriate (i.e., positive definite)

function C1, then we call the process stationary.

4 This shortcoming of the model was successfully corrected by

a modification of Eq. (12) in Lorenz (2005). Unfortunately, this

improvement of the model was achieved at the expense of in-

creasing the number of variables, which limits the appeal of the

improved model as a low computational cost alternative to a more

realistic atmospheric model.

5 We also carried out experiments in which we observed every

third location, but because the results were qualitatively similar to

those for observing all locations, we do not report the results for

that setting.
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Finally, when the mean is constant and the covariance

depends on the locations only through the distance

between the two locations, that is, C
2
(ju 2 yj) 5

Covf«b
u, «b

yg for an appropriate function C2, we call the

process isotropic.

One option to estimate the covariance function is to

use a parametric covariance model. There are various

parametric covariance models that are isotropic, for

example, the exponential function C
2
(x) 5 ae2x/b, the

Gaussian function C
2
(x) 5 ae2(x/b)2

, or the Matérn func-

tion C
2
(x) 5 a(x/b)nK

n
(x/b), where a, b, n are positive

parameters and K
n

is the modified Bessel function (x .

0). Parametric covariance models are also available for

certain nonstationary processes (Paciorek and Schervish

2006; Jun and Stein 2007). In some situations, we may

model a nonstationary process as a sum of several in-

dependent, locally stationary processes with simple

parametric stationary (or isotropic) covariance func-

tions (Fuentes 2001). Parametric methods, however, in

general, are not as flexible as nonparametric methods,

which do not make presumptions about the general

shape of the covariance function. For instance, the

nonstationarity of the background covariance structure

for the Lorenz-96 model is complex and there is no

obvious flexible parametric covariance model to fit the

covariance structure. This complexity is illustrated with

Fig. 1, which shows the sample covariance function for

various ensemble sizes in the Lorenz-96 model: the

sample covariance structure is not symmetric around the

center and has a strong dependence on the location.

These are clear signs of strong anisotropy and non-

stationarity of the background error. This result moti-

vates us to search for an appropriate nonparametric

method.

We use a kernel smoothing approach as our non-

parametric estimation method, which requires the se-

lection of a kernel function and a bandwidth. A kernel

is a nonnegative function, which is symmetric around

zero, and decreases monotonically as ju 2 yj goes to ‘;

for example, G(u 2 y) 5 exp[2(u 2 y)2], is a Gaussian

kernel function. There are various statistical methods

to choose optimal kernels and bandwidths, and in many

applications the effect of the selection of the kernel is

insignificant compared to the selection of the bandwidth.6

In what follows, we first develop a nonparametric method

to estimate the covariance function for the stationary

case and then we extend the method to the nonstationary

case.

b. Stationary estimate

Suppose a spatial process is stationary. Then, we es-

timate pb
uy 5 C

1
(u 2 y) by the kernel estimator given in

Hall and Patil (1994):

~pb
uy 5

1

K
�
K

k51
�
M

i51
�
M

j51
G

�
j(u 2 y) 2 (i 2 j)j

h

�
[X

b(k)
i 2 Xb(k)][X

b(k)
j 2 Xb(k)]

�
M

i51
�
M

j51
G

�
j(u 2 y) 2 (i 2 j)j

h

� . (13)

Here, h is a bandwidth, G(�) is a kernel function, and

Xb(k) is the spatial average, Xb(k) 5 (1/M)�M

i51X
b(k)
i , of

the kth ensemble perturbation Xb(x). The estimator in

Eq. (13) is actually isotropic in the sense that ~pb
uy 5 ~pb

yu

for all u and y. As Hall and Patil (1994) note, Eq. (13)

may not give a positive definite function and they sug-

gest a modified version of Eq. (13) to ensure positive

definiteness and to achieve nice mathematical proper-

ties of the estimator. Here we do not worry about the

positive definiteness of the estimate provided by Eq.

(13), as it is not the final scheme we intend to use.

Equation (13) can be easily adapted for d-dimensional

case (d . 1) by simply letting i and j inside of the pa-

rentheses be the coordinates of the ith and jth locations

on the d-dimensional domain.

Figure 2 shows the estimated covariance function

obtained with Eq. (13) for u 5 20 and y 5 1, . . . , 40.

Because of the stationarity assumption, the shape of

the estimated covariance function is the same for all

u 5 1, . . . , 40. Moreover, the estimated covariance

function is symmetric around the center. Each row

shows the result for a given bandwidth. The curves in

Fig. 2 do not match the sample covariances in Fig. 1,

further suggesting that the assumption of stationarity

for the background error in the Lorenz-96 model is not

appropriate.

c. Nonstationary estimate

We now extend Eq. (13) for the nonstationary case,

estimating pb
uy with

6 For more details on kernel estimation methods, see Fan and

Yao (2003).
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~pb
uy 5

1

K
�
K

k51
�
M

i51
�
M

j51
Gi(u; h)Gj(y; h)[X

b(k)
i 2 Xb(k)][X

b(k)
j 2 Xb(k)]

�
M

i51
�
M

j51
Gi(u; h)Gj(y; h)

, (14)

where Gi(u; h) and Gj(y; h) are kernel functions with

a fixed bandwidth h. See the appendix for the sketch of

proof for the positive definiteness of Eq. (14). Since the

kernel functions depend on the two locations, u and y,

Eq. (14) provides a flow-dependent estimate of the co-

variance. We may, for instance, use the Gaussian kernel

functions G
i
(u; h) 5 exp[2 (j i2uj /h)2] and G

j
(y; h) 5

exp[2 (j j2yj /h)2]. We note that the computational cost

of Eq. (14) can be greatly reduced by using a compactly

supported kernel for G, since it reduces the number of

terms in the double summation over i and j. Figure 3

shows the estimate of the covariance function ~pb
uy using

FIG. 1. Sample covariances between the two locations u and y using K ensemble members for

u 5 3, 30 and y 5 1, . . . , 40.
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Eq. (14). The covariance curve from P̂
b

5000 is displayed

(black curve) for comparison. The estimated co-

variance function changes with the location u and

provides a better fit to the large scale structure of the

sample covariance (Fig. 1) than the stationary estimate

(Fig. 2).

d. Adaptive bandwidth

As seen before, both the stationary and non-

stationary estimates of the covariance require the se-

lection of a bandwidth h: a larger value of h results in

a smoother estimate of the covariance, because it in-

volves a stronger averaging of the sample errors over

the neighboring locations. On the one hand, when h

goes to zero, the estimate provided by Eq. (14) be-

comes similar to the estimate provided by the sample

covariance estimate, except that in Eq. (14) we divide

the sums by K instead of K 2 1 and filter the back-

ground error perturbation Xb(k) with its mean Xb(k)

over the locations. On the other hand, when h is large,

the estimated covariance is smooth and, in the extreme

case, it becomes constant. This is because when h is

large, the kernel values in Eqs. (13) and (14) are almost

constant for all i, j, u, and y. See the bottom row in Fig. 3

for an example.

Because we expect the signal-to-noise ratio to be

lower at larger distances ju 2 yj, we introduce a band-

width h 5 h(ju 2 yj) that increases with the distance.7 In

particular, to make h smoothly varying with the dis-

tance, we let h 5 h1 expf(ju 2 yj/h2)2g. Thus, we make

the bandwidth adaptive at the price of replacing the

single bandwidth parameter h with a pair of parameters,

h1 and h2. Figure 4 shows examples of the dependence of

the adaptive bandwidth on the two parameters (Fig. 4,

top panel) and a comparison of the corresponding co-

variance estimates with the sample covariance using 20

ensemble members (Fig. 4, bottom panel). The two fig-

ures use the same color scale. For the bottom panel, we

also display sample covariances using 20 and 5000 en-

semble members for comparison. When h1 5 1027 and

h2 5 1, the adaptive bandwidth is about 1027 at all dis-

tances; thus, the nonparametric estimate becomes sim-

ilar to the sample covariance. The results for h1 5 0.01

and h2 5 2 are fairly similar. For the other choices of h1

and h2 the bandwidth increases with the distance and the

FIG. 2. Fitted covariance between the locations u 5 20 and y 5 1, . . . , 40 using the

nonparametric approach under stationarity assumption.

7 Localization of the sample covariance is equivalent to using an

h, which is nearly zero within the localization length and large

outside the localization length.
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corresponding fitted covariance values are close to zero

after a short distance (Fig. 4).

5. Quantitative comparison

Next, we compare the covariance estimates provided

by the nonparametric scheme with those based on the

sample and the localized sample covariance at a fixed

time step. For this comparison, we again use P̂
b

5000 as

a proxy for the true Pb. We measure the accuracy of all

our estimates to the true Pb by computing the Frobe-

nius norm of the difference between the estimates and

P̂
5000

b
8. For a given ensemble size K we randomly select

200 sets of K ensemble members from the 5000-member

FIG. 3. Fitted covariance between the locations u and y using the nonparametric approach for the nonstationary case.

The two chosen u values are the same as in Fig. 1. The black curve gives P̂
b

5000.

8 For a matrix A 5 fa
ij
g, the Frobenius norm is defined as

kAkF 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�ja

2
ij

q
.
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ensemble from which P̂
b

5000 is derived. We compute the

Frobenius norm of the difference between the estimates

and P̂
b

5000 for each of the 200 sets of ensembles and char-

acterize the accuracy of the estimates from the distri-

bution of the 200 values of the difference.

Results are shown for various values of the param-

eters h1 and h2 in Fig. 5. The ‘‘optimal’’ pair of values

is h1 5 0.05 and h2 5 0.8 in terms of the median, and

h1 5 0.1 and h2 5 1.5 in terms of the mean. For lo-

calization, we use the fifth-order kernel function de-

fined by Eq. (4.10) of Gaspari and Cohn (1999), which

is the most widely used localization function in the

EnKF literature. This function has a single parameter

c, which controls the localization length: while the

function formally becomes zero at distance 2c, the

filtered covariances are already nearly zero at dis-

tance c. Figure 6 shows the median and mean of the

Frobenius norm for different values of c. For a 20-

member ensemble, the ‘‘optimal’’ localization length,

with respect to the Frobenius norm, is smaller than c 5

24, the value that was reported to be optimal with re-

spect to the analysis accuracy for a 10-member ensemble

in Whitaker and Hamill (2002). Also, there is a notice-

able difference between the ‘‘optimal’’ localization length

with respect to the median, c 5 7.5, and to the mean,

c 5 5.

The covariance estimates provided by the non-

parametric scheme and the localization are compared for

the ‘‘optimal’’ values of the parameters of the two

schemes (Fig. 7). Overall, with respect to the mean, the

nonparametric scheme provides the most accurate esti-

mate except when the ensemble size is 5. The advantage of

this scheme over the sample covariance and the localiza-

tion with c 5 24 is particularly large for the small en-

sembles (K � 50). The advantage of the nonparametric

scheme over localization with c 5 5 is much more modest.

In addition, with respect to the median, the localization

with c 5 5 outperforms the nonparametric scheme when

K , 50. The system used here gives a highly non-

stationary covariance structure for the background er-

rors. The nonparametric scheme would be superior if

the true covariance structure was stationary or isotropic

[Eq. (13)].

6. Analysis experiments with filtered covariances

In section 5 we compared the accuracy of the filtered

covariance estimates for a single analysis time. In this

FIG. 4. A few adaptive bandwidth examples and the corresponding covariance fits with 20

ensemble members. (top) The shape of four adaptive bandwidths against the distance for the

four combinations of h1 and h2 values. (bottom) The corresponding fitted covariance values

between the locations u 5 3 and y 5 1, . . . , 40 with 20 ensemble members. Same scale is used for

the two figures for the adaptive bandwidth case. For the bottom panel, we have two additional

curves displaying sample covariances with 20 and 5000 ensemble members for comparison.
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section, we carry out analysis experiments with a K 5 20

member ensemble using the filtered estimates of the

background covariance in the computation of the Kalman

gain. The filter is run for 1500 time steps and statistics

are computed based on the last 1000 time steps.

a. Verification methods

We measure the accuracy of the analysis with

D 5
1

1000
�
1000

n51

1

M
�
M

m51
[«a

m(tn)]2

8<
:

9=
;

1/2

, (15)

the time-mean of the root-mean-square error over all

model variables. Here, «a
m(t

n
) is the analysis error at grid

point m at time tn, where «a
m(t

n
) 5 xa

m(t
n
) 2 xt

m(t
n
).

Using the mean of a time series of root-mean-square

FIG. 5. Frobenius norm of the (left) median and (right) mean of the differences between the fitted covariances from

the nonparametric scheme and P̂
b

5000 for various h1 and h2 values. The median and mean are computed from 200

independent trials.

FIG. 6. Frobenius norm of the differences between the fitted covariances from localization and P̂
b

5000 for various

localization lengths. We use the same ensemble members for each trial at a given ensemble size as in Fig. 5. (left) The

median from the 200 independent trials; (right) the mean. The minimum values for each ensemble size are given by

the triangles.
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errors is a standard practice in numerical weather pre-

diction to measure the quality of an analysis/forecast

system: the root-mean-square error computed over all

grid points characterizes the accuracy of the state es-

timate at a given time by a single number and the time

mean over an extended time period can be easily

computed retrospectively based on the archived root-

mean-square values. (Computing the root-mean-square

over time and space would require processing all grid-

point values at all times at the end of the verification

period.)

To characterize the estimates of the background er-

ror, we examine the estimates of pb
u for a fixed location

u. Since pb
u is a probabilistic variable, its estimates

cannot be evaluated for a single analysis time tn, for

which only a single realization, «b(tn) 5 xb(tn) 2 xt(tn),

of the background error is available. fHere we use the

notation «b(tn) 5 [«b
1(tn), «b

2(tn), . . . , «b
M(tn)]g. Thus, we

use the

Pbtc 5
1

1000
�
1000

n51
«b(tn)[«b(tn)]T (16)

estimate of the ‘‘climatological’’ value of the true back-

ground error covariance matrix: Ef«b(tn)[«b(tn)]Tg. We

compare Pbtc with

P̂bc 5
1

1000
�
1000

n51
P̂b(tn) 5

1

1000
�
1000

n51

1

K 2 1
�

K21

k51
Xb(k)[Xb(k)]T

5
1

K 2 1
�

K21

k51

1

1000
�
1000

n51
Xb(k)[Xb(k)]T, (17)

the time mean of the sample covariance matrix P̂b(t
n
).

For a properly constructed ensemble, «b(t
n
) and the

ensemble perturbations fXb(k): k 5 1, . . . , Kg are from

the same distribution; thus

P̂bc ’
1

K 2 1
�

K21

k51
Pbtc ’ Pbtc, and (18)

p̂bc
u ’ pbtc

u , (19)

where p̂bc
u and pbtc

u are the uth column of P̂
bc

u and Pbtc
u ,

respectively. Similar arguments can be made to show

that the filtered estimate should also satisfy

~pbc
u ’ pbtc

u , (20)

where ~pbc
u is the uth column of ~P

bc

u .

We emphasize that Eqs. (19) and (20) do not provide

information about the accuracy of the estimates p̂b(t
n
)

and ~pb(t
n
) at a single analysis time tn; instead, these re-

lations can be used to verify the consistency between

a time series of the estimated background error co-

variance matrix and a time series of the true background

error. Such consistency is a necessary, but not sufficient,

condition for P̂b(tn) or ~Pb(tn) to be an accurate repre-

sentation of Pb(t
n
) at the different analysis times.

b. Dependence of the results on the filtering
parameters

To establish a baseline of the analysis error, against

which we can measure the effectiveness of covariance

filtering, we first carry out an analysis experiment using

the unfiltered sample covariance matrix P̂. We find that

D takes its minimum value of 0.23 when r 5 1.06; using

smaller values of r makes the filter unstable, while in-

creasing r leads to increasingly larger values of D.

First, we filter the sample covariance estimates using

localization. Whitaker and Hamill (2002) studied, in

detail, the sensitivity of the analysis error to the locali-

zation parameter c and the variance inflation coefficient

r for K 5 10. They found that the root-mean-square

error in the analysis mean xa took its smallest value of

0.2 for c 5 24 and r 5 1.03.9 Using the same values of

FIG. 7. Frobenius norm of the differences between the fitted

covariances and P̂
b

5000 for various ensemble sizes. We use the same

ensemble members for each trial at a given ensemble size as in

Fig. 5. The box plots indicate the distribution of differences found

in the 200 test trials in the following way: The lower and upper

bounds of the box respectively give the 25th and 75th percentile of

differences (as measured by the Frobenius norm) found in the 200

trials. The thick line going across the interior of the box gives the

median of the differences found in the 200 trials. The whiskers or

thin lines depend on the interquartile range (IQR) that is pre-

cisely equal to the vertical length of the box. The whiskers extend

to the most extreme values (differences obtained in the 200 trials)

which are no more than 1.5 IQR from the box. The solid lines

connect the means of the differences in the 200 trials at each

ensemble size.

9 The correct figure to support their result can be found in the

corrigendum of Whitaker and Hamill (2002).
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c and r for K 5 20, we obtain a root-mean-square error

of D 5 0.19. This value indicates an error reduction of

0.04 (about 17%) compared to the case when no co-

variance filtering is used. For c 5 5, the value that we

found optimal for a single analysis time in section 5, the

minimum value of D is 0.22, which can be obtained using

r . 1.025. That is, the performance of the EnKF for c 5

5 is clearly inferior to that for c 5 24, despite our earlier

result that c 5 5 provides a more accurate estimate at

a single analysis time.

Finally, we investigate the sensitivity of the analysis

error to the parameters h1 and h2 using the non-

parametric scheme with adaptive bandwidth to filter

the covariance. We show results for r 5 1.025, the

value of the variance inflation we found to provide the

smallest value of D. The results are summarized in Fig. 8.

In this figure, the white area indicates the parameter

range where the filter fails, indicated by a value of D,

which is larger than one, the root-mean-square of the

observation error. The typical value of D in this region

is between 3.0 and 4.0, which is similar to the standard

deviation of the temporal changes in the model vari-

ables. An interesting feature in Fig. 8 is the sharp

boundary between the parameter ranges where the

filter fails and where the analysis error is the smallest.

The parameter range where the performance of the

EnKF is nearly optimal (marked by blue shades) is

wide: a large value of h2 cannot be used with a small

value of h1, but once h1 is larger than about 0.03, the

analysis error becomes insensitive to the choice of h2.

In essence, an increase of the bandwidth with distance is

important only when the bandwidth at zero distance

is small. In the blue region, the root-mean-square error is

about D 5 0.2, lower than that for localization with c 5 5,

but slightly worse than that for localization with c 5 24.

c. Consistency between the estimated and the
true errors

Figure 9 illustrates the level of consistency between

the sample covariance and the covariance for the true

background error. While the general shape of the co-

variance function is captured well by the sample co-

variance, at short distances, ju 2 yj # 2 (18 # y # 22),

the absolute value of the covariance is somewhat

overestimated. This overestimation can be easily cor-

rected by reducing the variance inflation, but reduc-

ing the variance inflation quickly leads to a loss of

the stability of the EnKF. At longer distances, beyond

ju 2 yj $ 5, the time mean of the sample covariance is

about zero, while the time mean of the true error is

small, but not zero at most distances. We note that the

near-zero values at the larger distances for the sample

covariance are due to the filtering effect of time aver-

aging, as we observe relatively large instantaneous es-

timates of the covariance (results not shown) at those

distances. This result suggests that the relatively large

instantaneous values at the larger distances are domi-

nated by statistical fluctuations.

FIG. 8. The grayscale shades show the value of D for r 5 1.025 as a function of the parameters

h1 and h2.
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We show results on the consistency of the estimates

of the covariance for c 5 5 (Fig. 10) and c 5 24 (Fig. 11).

In these figures, both the sample and the localized esti-

mates slightly overestimate the variance. As in the case

of the results shown in Fig. 9, this overestimation can be

corrected by reducing the variance inflation, but re-

ducing the variance inflation makes the filter unstable.

At distances ju 2 yj# 2, the consistency is clearly better

for c 5 24 than for c 5 5, as for the latter choice of c, the

magnitude of the negative covariance at ju 2 yj 5 2 is

underestimated. The difference in the accuracy of the

estimates at ju 2 yj 5 2 may explain the better perfor-

mance of the EnKF for c 5 24 than for c 5 5. For c 5 5, at

distances ju 2 yj. 10, the filtered estimate is zero, while

the sample covariance shows some distance-dependent

variation. For c 5 24, the sample and the filtered co-

variance shows a high level of consistency with each

other. This is an indication that the localized covariance

with c 5 24 leads to a better consistency between

the localized covariance estimate and the ensemble

perturbations.

We show results for two different choices of the

bandwidth parameters of the nonparametric estima-

tion scheme: h1 5 0.05, h2 5 1.5 (Fig. 12) and h1 5 0.11,

h2 5 1.5 (Fig. 13). A common feature of these figures is

that the consistency between the sample and the fil-

tered estimates is lower than for the localization-

based filtering for c 5 24. (We recall that localization

with c 5 24 provides the most accurate analysis among

all filtering schemes tested here.) Thus, we conclude

that the scheme that provides the most accurate

analysis, on average, is the scheme for which the

sample and the filtered estimates are most consistent

with each other (localization with c 5 24). This is also

the scheme that provides the best consistency with the

true errors for short distances. The results of this

section suggest that a better metric of covariance fil-

tering skill would be one that combined a measure of

closeness to the sample covariance matrix for a very

large ensemble with a measure of similarity between

the climatological averages of the filtered and sample

covariance.

7. Conclusions

In this paper, we investigated the effects of filtering

the sample covariances used in the computation of the

Kalman gain in an EnKF on the accuracy of the esti-

mates of the background error covariance. We consid-

ered two particular approaches to filter the sample

FIG. 9. The components p̂bc
uy , y 5 1, . . . , 40, of p̂bc

u (gray dashed) and

p̂btc
uy , y 5 1, . . . , 40 of pbtc

u (light gray solid) for u 5 20.

FIG. 10. The components p̂bc
uy , y 5 1, . . . , 40 of p̂bc

u (gray

dashed) and pbtc
uy , y 5 1, . . . , 40, of pbtc

u (light gray solid) and
~pbc

uy , y 5 1, . . . , 40, of ~pbc
u for localization with c 5 5 for u 5 20.

FIG. 11. The components p̂bc
uy , y 5 1, . . . , 40, of p̂bc

u (gray dashed)

and pbtc
uy , y 5 1, . . . , 40 of pbtc

u (light gray solid) and ~pbc
uy , y 5 1, . . . , 40

of ~pbc
u for localization with c 5 24 for u 5 20.
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covariance: the more traditional approach of covariance

localization and a new kernel smoothing method with

variable bandwidth to obtain nonparametric estimates

of the covariances.

We found that for a single analysis time, the non-

parametric scheme provided the overall most accurate

estimate of the covariances and that localization

provided more accurate estimates with short locali-

zation length than with long localization length. We

also found, however, that when the analysis is cycled,

localization with long localization length provided

more accurate analysis in the root-mean-square sense

than the nonparametric scheme or localization with

short localization length. We explained this result with

the better consistency between the covariance estimates,

the true background error covariance, and the ensemble

perturbations that represent the background uncertainty.

Our results suggest that preserving such consistency is

important.

Finally, we note that the Lorenz-96 model, with its

rapidly changing background covariance between loca-

tions, poses a considerable challenge to the covariance

estimation methods. It is plausible that some of our

findings would not hold for a more realistic model in

which the background error covariance changes in a

smoother way. In such a model, distinguishing between

the spatially rapidly changing sampling noise and the

smoother changing true covariance should be easier,

which we expect to benefit the new kernel smoothing

method more than localization.
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APPENDIX

Proof of the Positive Definiteness of Eq. (14)

We give a brief sketch of the proof for the positive

definiteness of the covariance function in Eq. (14).

It is sufficient to show the positive definiteness of

�
M

i51
�
M

j51
Gi(u; j)Gj(y; h)[X

b(1)
i 2 Xb(1)][X

b(1)
j 2 Xb(1)] �

M

i51
�
M

j51
Gi(u; j)Gj(y; h).

,

The idea is similar to the proof given by Eq. (4) of Paciorek and Schervish (2006).

FIG. 12. The components p̂bc
uy , y 5 1, . . . , 40 of p̂bc

u (gray

dashed) and pbtc
uy , y 5 1, . . . , 40 of pbtc

u (light gray solid) and
~pbc

uy , y 5 1, . . . , 40 of ~pbc
u for the nonparametric scheme with h1 5

0.05 and h2 5 1.5 for u 5 20.

FIG. 13. The components p̂bc
uy , y 5 1, . . . , 40 of p̂bc

u (gray dashed)

and pbtc
uy , y 5 1, . . . , 40 of pbtc

u (light gray solid) and ~pbc
uy , y 5

1, . . . , 40 of ~pbc
u for the nonparametric scheme with h1 5 0.11 and

h2 5 1.5 for u 5 20.
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For any a
1
, . . . , a

n
2 R and any n2 N,

�
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�
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�
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