
Can We Optimize the Assimilation Order in the Serial Ensemble Kalman Filter?
A Study with the Lorenz-96 Model

SHUNJI KOTSUKI

Data Assimilation Research Team, RIKEN Advanced Institute for Computational Science, Kobe, Japan

STEVEN J. GREYBUSH

Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

TAKEMASA MIYOSHI

Data Assimilation Research Team, RIKEN Advanced Institute for Computational Science, Kobe, Japan, and

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and

Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

(Manuscript received 11 April 2017, in final form 4 October 2017)

ABSTRACT

With the serial treatment of observations in the ensemble Kalman filter (EnKF), the assimilation order of

observations is usually assumed to have no significant impact on analysis accuracy. However, Nerger derived

that analyses with different assimilation orders are different if covariance localization is applied in the ob-

servation space. This study explores whether the assimilation order can be optimized to systematically im-

prove the filter estimates. A mathematical demonstration of a simple two-dimensional case indicates that

different assimilation orders can cause different analyses, although the differences are two orders of mag-

nitude smaller than the analysis increments if two identical observation error variances are the same size as

the two identical state error variances. Numerical experiments using the Lorenz-96 40-variable model show

that the small difference due to different assimilation orders could eventually result in a significant difference

in analysis accuracy. Several ordering rules are tested, and the results show that an ordering rule that gives a

better forecast relative to future observations improves the analysis accuracy. In addition, the analysis is

improved significantly by ordering observations from worse to better impacts using the ensemble forecast

sensitivity to observations (EFSO), which estimates how much each observation reduces or increases the

forecast error. With the EFSO ordering rule, the change in error during the serial assimilation process is

similar to that obtained by the experimentally found best sampled assimilation order. The ordering has more

impact when the ensemble size is smaller relative to the degrees of freedom of the dynamical system.

1. Introduction

Since first proposed by Evensen (1994), the ensemble

Kalman filter (EnKF) has been explored extensively in the

past two decades as a practical choice for advanced data

assimilation methods in numerical weather prediction

(NWP) and other applications. Advantages of the EnKF

include flow-dependent background error covariances,

relative ease of implementation, an analysis ensemble that

represents the analysis error, and straightforward appli-

cation to nonlinear dynamics (e.g., Ott et al. 2004; Tippett

et al. 2003; Li et al. 2009a,b). EnKF methods are catego-

rized into two types: the perturbed-observation (PO)

method (Burgers et al. 1998) and ensemble square root

filters (EnSRFs; Whitaker and Hamill 2002). Within the

category of EnSRF, several implementations have been

proposed (Tippett et al. 2003). They have two different

ways of treating observations: serial treatment and simul-

taneous treatment. Some EnSRF methods such as the

ensemble adjustment Kalman filter (EAKF; Anderson

2001) and serial EnSRF (Whitaker and Hamill 2002) treat

observations serially. On the other hand, the local EnKFCorresponding author: Shunji Kotsuki, shunji.kotsuki@riken.jp
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(LEKF; Ott et al. 2004), the ensemble transform Kalman

filter (ETKF; Bishop et al. 2001), and the local ETKF

(LETKF; Hunt et al. 2007) are designed to treat observa-

tions simultaneously.

We usually assume that in the serial treatment of obser-

vations the assimilation order has no significant impact on

data assimilation performance such as analysis accuracy and

computational speed. In fact, with a linear observation op-

erator and the Gaussian error assumption, assimilating two

observationsA andB in the order of (A,B) results in exactly

the same analysis as assimilating the same observations in

the reverse order (B,A) in any serial EnKF implementation

if no covariance localization is applied (cf. a theoretical

demonstration in section 2). However, Nerger (2015, here-

after N15) derived that the analyses with different assimila-

tion orders are different if covariance localization is applied

in the observation space. In practical EnKF applications, it is

known that covariance localization is necessary to remove

sampling errors in the ensemble-based error covariance

between distant locations (Houtekamer and Mitchell 1998,

2001; Hamill et al. 2001). N15 pointed out that the analysis

equation for the error covariance matrix is not fulfilled with

the observation-space localization. Therefore, analyses with

different assimilation orders may not be identical. With a

simple two-dimensional example, N15 demonstrated that

the analysis state depends on the assimilation order in the

serial observation processing (cf. appendix of N15).

Previous studies explored better ordering rules for the

serial observation treatment. Whitaker et al. (2008) pro-

posed an ordering rule (hereafter, the W08 rule) based on

the order of the error variance reduction. The W08 rule

was designed for adaptive observation thinning by identi-

fying observationswith insignificant impacts in terms of the

error variance reduction. More recently, N15 showed that

different assimilation orders result in different analyses

and error covariances with an idealized two-dimensional

data assimilation example. N15 also tested several order-

ing rules, including random ordering, using the Lorenz-96

model (L96; Lorenz 1996; Lorenz andEmanuel 1998). N15

found that theW08 rule improved the analysis slightly but

significantly. N15 pointed out that the W08 rule stabilized

the filter for broad choices of inflation and localization

parameters. N15 tested another ordering rule by sorting

observations so that remaining observations are distrib-

uted uniformly, but found no significant improvement.

This study extends the previous studies and further

explores the assimilation order in a serial EnKF. Here,

we investigate if any new specific rules of selecting the

assimilation order result in more accurate analyses, and

how the serial EnKF with better and worse assimilation

orders compares with the LETKF. Again, the LETKF

assimilates all observations simultaneously and does not

have the freedom to choose the assimilation order.

Section 2 demonstrates theoretically how the assimi-

lation order may impact the analysis in the serial EnSRF

with a simple two-dimensional example. Based on the

simple two-dimensional example, we explore ordering

rules to improve the analysis. Section 3 summarizes or-

dering methods, and numerical experiments using the

L96model are presented in section 4. Section 5 provides a

discussion, followed by the conclusions in section 6.

2. Theoretical demonstration

Impact of localization

We first consider a simple two-dimensional problem to

demonstrate how the assimilation order of observations

could possibly impact the analysis. N15 showed a different

two-dimensional example in which different assimilation

orders result in different analyses and error covariances (cf.

appendix of N15). Here, we consider a more general two-

dimensional problem. See also appendixA formore details.

The state vector x 5 (x1, x2)
T is estimated by taking

two observations y1 and y2 with the corresponding ob-

servation operators h1 5 (1, 0) and h2 5 (0, 1), re-

spectively, so that yi (i5 1, 2) observes the state variable

xi. If we assimilate observations simultaneously, the

observation operator is the following:

H5

�
h
1

h
2

�
.

We assume that the two observations are independent,

so that the error covariance matrix R is diagonal. The

observation error covariance matrix R and the back-

ground (prior) error covariance matrix Pf are generally

written in terms of variances and covariances as

R5

�
r
1

0

0 r
2

�
and

P f 5

�
y
1

c

c y
2

�
.

In this two-dimensional experiment, we apply the

Kalman filter equation to obtain the analysis xa:

xa 5 xf 1K(yo 2Hxf ) , (1)

K5PfHT(HPfHT 1R)21, (2)

Pa 5 (I2KH)Pf (I2KH)T 1KRKT, (3)

where x andP are the state vector and its error covariance

matrix, respectively; superscript a and f denote analysis

and forecast, respectively; yo and H denote the observa-

tion vector and observational operator, respectively; and

K is the Kalman gain. If Pf and R in Eq. (3) are the same

as those in Eq. (2), Eq. (3) can be simplified to be
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Pa 5 (I2KH)Pf . (4)

The EnSRF solves these equations using an ensemble to

estimate Pf, so we can extend the following discussions

to EnSRF without loss of generality.

Here, we define three localization methods in this

two-dimensional example. The localization matrix Z is

defined by

Z5 (z
1
, z

2
)5

�
1 L

L 1

�
,

where L (0 , L , 1) is the localization factor. The first

method localizes the background error covariance Pf

in the model space (hereafter, Ploc). The localization

matrix Z is applied to Pf as

Pf+Z5

�
y
1

cL

cL y
2

�
,

where the symbol + denotes the elementwise product.

With Ploc, the analysis error covariances Pa in Eqs. (3)

and (4) are the same because the same background error

covariance Pf+Z is used in Eqs. (2) and (3). With Ploc,

simultaneous and serial assimilations result in the same

analysis xa and error covariance Pa (cf. appendix A).

However, we usually use observation space localization

for high-dimensional systems because we cannot storePf

in memory explicitly (Houtekamer and Mitchell 2001;

Campbell et al. 2010). In addition, increasing the rank of

Pf with Ploc is also problematic. The localized Pf results

in a high-rank Pa that cannot be represented by small

ensembles. Therefore, one cannot apply Ploc with small

ensembles even for low-dimensional systems such as the

L96model. The secondmethod localizes the PfHT in Eq.

(2) in the observation space (hereafter, Kloc). Kloc also

localizes HPfHT in simultaneous assimilation methods.

The serial EnKF usually uses Kloc, and the localization

is applied as

PfhT
1+z1 5

�
y
1

cL

�
or

PfhT
2+z2 5

�
cL

y
2

�
,

respectively. In the simultaneous assimilation, Kloc is

realized as

PfHT+Z5

�
y
1

cL

cL y
2

�
.

Note that the analysis error covariance Pa should be

computed by Eq. (3) with Kloc because Eqs. (3) and (4)

are not equivalent with Kloc (cf. section 2c of N15).

Finally, the third localization method inflates the ob-

servation error covariance R so that distant observa-

tions weigh less on the analysis (hereafter Rloc) as

implemented in the LETKF (e.g., Hunt et al. 2007;

Miyoshi and Yamane 2007). In the LETKF, analysis

equations are solved independently at each compo-

nent with the inflated observation error covariances.

With Rloc, the localization matrices are defined in-

dependently for components x1 and x2 as

Z21
x1 5

�
1 0

0 1/L

�
and

Z21
x2 5

�
1/L 0

0 1

�
,

where subscripts x1 and x2 denote the localizationmatrix

Z for components x1 and x2, respectively (Greybush

et al. 2011). Using the localization matrices, the local-

ized observation error covariances are realized as

R+Z21
x1 5

�
r
1

0

0 r
2
/L

�
and

R+Z21
x2 5

�
r
1
/L 0

0 r
2

�
.

If we assimilate the two observations without locali-

zation (L 5 1), simultaneous assimilation and serial as-

similation result in the same solutions (cf. appendix A).

However, analysis states and/or error covariances are

different if we assimilate the two observations with lo-

calization (0 , L , 1) for Ploc, Kloc, and Rloc. It is im-

portant to evaluate how significant these differences are

relative to the analysis increments and error variances.

Here, we discuss the differences in the analysis and

its error covariance obtained by Ploc, Kloc, and Rloc.

We consider y ; O(l), r ; O(l), and c ; O(l/2), re-

spectively, whereO(l) represents the order ofmagnitude

of the system’s error variance. We also approximate

(y
i
2 x

i
);O(

ffiffiffiffiffiffi
2l

p
), i5 1, 2, (5)

using y ; O(l), r ; O(l) and Desroziers et al. (2005)’s

diagnostic equation

(yo 2 x)(yo 2 x)T
D E

5P1R if H5 I , (6)

where ,�. denotes the statistical expectation. We

evaluate the differences of the analyses relative to the

analysis increment, and the differences of the analysis

error variances relative to the analysis error variance for

the first component x1 (x
a
(1) and Pa

(1,1)) as follows:
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a5 xa(1)2xaPloc(1)

� �
= xaPloc(1) 2xf(1)

� �
, (7)

b5 Pa
(1,1)2PaPloc

(1,1)

� �
=PaPloc

(1,1) , (8)

where, xa is xaKloc
simul , x

aKloc
y1/y2

, xaKloc
y2/y1

, or xaRloc
simul , and Pa is

PaKloc
simul , PaKloc

y1/y2
, PaKloc

y2/y1
, or PaRloc

simul , respectively. Sub-

scripts (i) and (i, j) represent ith element of a vector, and

ith-column–jth-row element of a matrix, respectively.

Subscripts simul, y1 / y2, and y2 / y1 represent the

simultaneous, serial order (y1, y2), and serial order (y2, y1),

respectively. Superscripts Ploc, Kloc, and Rloc denote

localization with Ploc, Kloc and Rloc, respectively.

Figure 1 compares a and b as a function of the locali-

zation factor L. Here we used y 5 r5 l 5 1, x5 (0, 0)T,

and yo5 (
ffiffiffiffiffiffi
2l

p
,

ffiffiffiffiffiffi
2l

p
)T5 (

ffiffiffi
2

p
,

ffiffiffi
2

p
)T, but we can obtain the

same results with any choice of l mathematically. For the

analysis state xa, simultaneous assimilation with Kloc re-

sults in the same analysis with Ploc mathematically in this

two-dimensional problem (i.e., xaPloc 5 xaKlocsimul ). However,

they result in different analysis error covariancesPaPloc and

PaKloc
simul (black line in Fig. 1b) because Ploc andKloc use the

sameK, but differentPf in Eq. (3). Serial assimilation with

Kloc results in different analysis states (xaKloc
y1/y2

and xaKloc
y2/y1

)

from simultaneous assimilation with Kloc (red and blue

lines in Fig. 1a). Figure 1a shows that the change in the

blue line is larger than that in the red line, suggesting that

the serial assimilation y2 / y1 result in a larger difference

in the analysis state for the component x1 than the serial

assimilation y1/ y2. Namely, the difference in xaKlocat the

ith component between the simultaneous and serial as-

similation becomes larger if the component is assimilated

later. On the other hand, the analysis error covariances

PaKloc
y1/y2

and PaKloc
y2/y1

are identical in this two-dimensional

problem. Simultaneous and serial assimilation with Kloc

result in different analysis error variances (purple and

black lines in Fig. 1b), but the difference is small compared

to the difference between PaPloc and PaKloc
simul . If we focus on

comparing the serial and simultaneous assimilation with

Kloc, a larger difference is found in the analysis state than

the error variance. Rloc results in the different analysis

state and error covariance from Ploc.

The ratios of difference are less than 4.0%, suggesting

that the differences be two orders of magnitude smaller

than the analysis increment and error covariance when

two identical observation error variances have the same

order of magnitude as the two identical state error var-

iances. The differences peak around L 5 0.5 (Fig. 1).

Figure 1 also indicates that the solutions are identical

when L 5 1 (i.e., no localization). Although the differ-

ences of xa and Pa caused by the assimilation order are

very small at a single assimilation step, the small dif-

ferences may accumulate in time and potentially cause a

significant impact on analysis accuracy as shown by N15.

The differences may be larger if, for example, the ob-

servation error variance is significantly smaller or larger

than the state error variance. Also, the differences may

be much greater in larger dimensional systems such as

the L96 or atmospheric models.

3. Ordering rules

With the serial treatment of observations, it is gener-

ally prohibitive to investigate all possible assimilation

orders. We tested several possible assimilation ordering

rules, and this paper discusses some assimilation orders

that resulted in significant impacts on the analysis errors.

Some other assimilated orders and their results are de-

scribed in appendix B.

FIG. 1. Ratios of (a) the differences of the analyses relative to the analysis increment with Ploc [a in Eq. (7)], and

(b) the differences of the analysis error variances relative to the analysis error variance with Ploc [b in Eq. (8)]

where a and b represent the differences for the first component x1. Black, red, blue, and green lines in (a) show the

differences of the analyses between xaPloc and xaKloc
simul , x

aKloc
y1/y2

, xaKloc
y2/y1

, and xaRloc
simul , respectively. Black, green, and purple

lines in (b) show the differences of the analysis error variances between PaPloc and PaKloc
simul , P

aRloc
simul , and PaKloc

y1/y2

(5PaKloc
y2/y1

), respectively.
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First, we consider three ordering rules to investigate

the potential impact of the assimilation order experi-

mentally (Figs. 2a–c). In the best and worst sampled

traces relative to the truth (hereafter, BEST-T and

WORST-T traces), N assimilation orders are generated

randomly at every assimilation cycle. The BEST-T and

WORST-T traces select the order that results in the

smallest and largest root-mean-square errors (RMSEs)

relative to the true state xt out of the randomly selected

N assimilation orders. This best-sampled and worst-

sampled analysis then serves as the initial condition for

the subsequent forecast, and the process is repeated.

The RANDOM trace selects an assimilation order

randomly at every assimilation step. Analysis accuracy

of the RANDOM trace is considered to be an expected

accuracy since the assimilation order is determined

randomly without any special attention to the assimila-

tion order. On the other hand, the BEST-T and

WORST-T traces are designed to approximate the

range of accuracy experimentally.

We consider additional ordering rules to find better and

worse assimilation orders by minimizing and maximizing

the root-mean-square differences (RMSDs) between the

future observation and forecasts (hereafter BEST-FO and

WORST-FO traces; Figs. 3a,b). Note that this manuscript

defines the RMS error (RMSE) relative to the truth, and

RMS difference (RMSD) relative to the observation. In

the BEST-FO and WORST-FO traces, N0 assimilation

orders are generated randomly at every assimilation step.

At each assimilation step, N0 forecasts are launched from

every initial condition of the N0 assimilation orders until

the end of a prescribed time window t_fcst 1 t_window.

For every forecast, we compute the time-mean RMSDs

relative to the observations yo. The BEST-FO and

WORST-FO traces use the order that results in the

smallest and largest RMSDs among the N0 assimilation

orders. Better analysis states, which have lower RMSE,

statistically result in better forecasts relative to the future

observations. To compute the time-mean RMSDs, we use

observations over the time window (from t_fcst to t_fcst1
t_window) to reduce the influence of observation noise.

The observations before t_fcst are not used to compute the

average RMSD because the observation errors are gen-

erally larger than the forecasted errors just after the initial

time. The BEST-FO trace has the form of a smoother that

utilizes future observations to improve the current analysis

FIG. 2. Schematic of the (a) BEST-T, (b) WORST-T, and (c) RANDOM traces. In the BEST-T and WORST-T traces, N assimilation

orders are generated randomly for every assimilation cycle. At each assimilation step, RMSEs relative to the true state xt are computed for

every assimilation order. The BEST-T and WORST-T traces use the order that results in the smallest and largest RMSEs out of the N

assimilation orders. The RANDOM trace selects the assimilation order randomly for every assimilation cycle.
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step. The BEST-FO and WORST-FO traces are applica-

ble to reanalysis experiments in practice; they are, how-

ever, computationally expensive because of the extra

forecasts. Note that random assimilation orders are gen-

erated at every assimilation step for the RANDOM,

BEST-T, WORST-T, BEST-FO, and WORST-FO traces

because the better and worse assimilation orders can be

different at each analysis step depending on the forecasted

state and error covariance.Also, it should be noted that we

can investigate a finite number of observation orders

among p! possible orders for the RANDOM, BEST-T,

WORST-T, BEST-FO, and WORST-FO traces.

To further address whether or not any specific rules of

the assimilation order of observations result in more ac-

curate analyses, we consider the following ordering rules.

They are the ascending and descending orders of jyo2Hxtj
(observationminus truth; hereafterOMT), and jHxf2Hxtj
(first guess minus truth; hereafter BMT). Here, the abso-

lute value is used as the norm j j (a.k.a. the l-1 norm). We

apply the l-1 norm for each component of vectors yo2Hxt

andHxf2 Hxt. For example, ascending order of jyo2 Hxtj
sorts observations from the smallest to largest jyo 2 Hxtj.
We also test the W08 rule, which determines the as-

similation order as follows: 1) for each observation, as-

similate the observation and compute an error variance

reduction within the localization length scale, and 2)

sort the observations according to the error variance

reduction. The reduction of the error variance s(i) is

defined as

s(i) 5
HPa(i)HT

HPfHT
, i5 1, . . . ,p , (9)

where Pa(i) denotes the analysis error covariance by as-

similating the ith observation. FollowingN15, we assimilate

observations in the ascending order of s(i). Namely, the

observation with the biggest impact on reducing s(i) is as-

similated first. N15 reported that the ordering rule of W08

stabilized the analysis and reduced the analysis error

slightly. The variance reduction becomes bigger as the

signal-to-noise ratio (SN ratio) becomes larger. We can

statistically expect a better impact fromobservations with a

larger SN ratio. Therefore, theW08 rulewould improve the

analysis if better observations are assimilated earlier.

Finally, we test two ordering rules using the ensemble

forecast sensitivity to observations (EFSO; Kalnay et al.

2012). The EFSO enables the estimation of how much

each observation reduces or increases the forecast error

verified against the analysis at a verification time t in the

future. In the EFSO, the impact of the ith observation (Ji)

is computed as follows [cf. Eq. (9) of Kalnay et al. (2012)]:

J
i
’

1

m2 1
yo0 2Hxf

0j21

� �T

i
rR21HXa

0 XfT

tj0
� �

C ef
tj0 1 ef

tj21

� �h i
i
,

(10)

where m is the ensemble size, X is the ensemble per-

turbationmatrix, r is the localization function, andC is a

squarematrix measuring the error. Subscript21, 0, and t

FIG. 3. Schematic of the (a) BEST-FO and (b) WORST-FO traces. In the BEST-FO andWORST-FO traces,N0

assimilation orders are generated randomly for every assimilation cycle. At each assimilation step, averageRMSDs

over the time window relative to the observations yo are computed from forecasts generated from every assimi-

lation order. The BEST-FO and WORST-FO traces use the order that results in the smallest and largest RMSDs

among the N0 assimilation orders.
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denote time at the last data assimilation, current analysis

and future verification time respectively. The variable e

is the forecast error relative to the analysis at the veri-

fication time t, and given by ef
tj0 5 xf

tj0 2 xat and

ef
tj21

5 xf
tj21

2 xat , where xf
tj0 and xf

tj21
denote forecasts

started at time 0 and21, respectively. Negative Jmeans

the forecast error reduction (i.e., better impact). The

verification time t used in the experiments is described in

section 4c. Kalnay et al. (2012) evaluated the impacts of

the ith observation for the nth grid point (De2)n,i [Eq. (9)
of Kalnay et al. (2012)]. In that context, the observation

impact Ji in Eq. (10) is given to be Ji 5�ngrid

n51 (De
2)n,i

where ngrid is the number of model grid points. Using

the observation impacts estimated by the EFSO (Ji),

observations are sorted from better to worse impact

(EFSO-BtoW), or from worse to better impact (EFSO-

WtoB). Note that the EFSO ordering rules use future

observations to compute the analyses at the verification

time for the forecast error verifications. However, the

EFSO-BtoW and EFSO-WtoB orders can be de-

termined uniquely, in contrast to the BEST-FO and

WORST-FO traces, which also use future observations

to determine the assimilation orders from randomly

generated N0 assimilation orders.

Appendix A (see Table A1) summarizes all ordering

rules. Note that several ordering rules use the truth,

and are inapplicable in practice. Although the true

state is unknown in practice, we investigate if we could

optimize the orders in the idealized situation such as

an OSSE.

4. Numerical experiments

a. Model

We examine the impacts of different assimilation or-

ders by performing idealized experiments with the 40-

variable L96 model (Lorenz 1996; Lorenz and Emanuel

1998). L96 has been widely used for theoretical studies

in data assimilation (e.g., Anderson 2001; Whitaker and

Hamill 2002; Ott et al. 2004; Miyoshi 2011; N15) and is

described by the following equation:

dX
j
=dt5 (X

j11
2X

j22
)X

j21
2X

j
1F, i5 1, . . . , 40,

(11)

where the boundary is cyclic: X21 5 X39, X0 5 X40, and

X1 5 X41. Following Lorenz and Emanuel (1998), the

model is integrated with the forth-order Runge–Kutta

scheme and a time step of 0.01 nondimensional units.

The forcing F is fixed at 8.0, which makes the model

behave chaotically. With F 5 8, the unit time corre-

sponds to 5 days in terms of the system’s error growth

rate (Lorenz 1996).

b. Data assimilation schemes

To investigate the potential impact of the assimilation

order on analysis accuracy in the serial treatment of

observations, we use the serial EnSRF proposed by

Whitaker and Hamill (2002). The analysis ensemble

mean xa and perturbations Ea by assimilating a single

observation are obtained by

xa 5 xf 1 k(yo 2 hxf ) , (12)

Ea 5 (I2 ~kh)Ef , (13)

~k5

2
411

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

r1 hEf (hEf )T

s 3
5
21

k , (14)

k5Ef (hEf )T hEf (hEf )T 1 r
h i21

, (15)

where yo and r denote the scalar observation and its

error variance, respectively. Here Ef, k, k(;), and h are

the prior ensemble perturbations, Kalman gain formean

update, gain for perturbation update, and observational

operator for the single observation, respectively (cf.

Whitaker and Hamill 2002). Each column of E corre-

sponds to the ensemble perturbations divided by the

square root of (m2 1). In the serial EnSRF, the Kalman

gain k is localized as a function of distance between

model points and observation points (Houtekamer and

Mitchell 1998). The Kloc function f of distance d be-

tween grid points i and j is described as follows (Gaspari

and Cohn 1999; Hamill et al. 2001; Greybush et al. 2011):

fKloc 5 exp 20:5 d(i, j)/s
loc

� �2n o
, (16)

where sloc is the localization parameter to scale the width

of localization. The Kloc function f becomes less than

0.002 beyond the finite distance at about 3.65 times sloc.

The localization-scale parameter is manually optimized

for each experiment. After assimilating one observation,

xa and Ea are considered as xf and Ef, and the next ob-

servation is assimilated. The process is repeated until all

observations are assimilated at a single assimilation step.

We also perform numerical experiments with the

LETKF that treats observations simultaneously. The

LETKF solves the analysis equations at each grid point

independently. The ensemble update of the LETKF is

given by

Ea 5EfUL21/2UT , (17)

where we define the eigenvalue decomposition:

(m2 1)I1 (HEf )TR21HEf 5ULUT (18)
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(cf. Hunt et al. 2007). Here U is the square matrix whose

columns are the eigenvectors, and L is the diagonal

matrix whose diagonal elements are the eigenvalues.

The analysis ensemble mean xa is obtained by solving

xa 5 xf 1EfUL21UT(HEf )TR21(yo 2Hxf ) . (19)

Error covariance localization within the LETKF is

realized through observation localization (i.e., Rloc;

Hunt et al. 2007; Miyoshi and Yamane 2007). Here, the

inverse of the Kloc function is multiplied to the obser-

vational error variance, so that distant observations are

treated as if they have larger errors and therefore weigh

less on the analysis.

c. Experimental design

Perfect-model identical twin experiments are per-

formed. The nature run is generated by running the L96

model for 8030 time units, which corresponds to 110 years

in terms of the system’s error growth rate. The observa-

tional data are simulated by adding uncorrelated white

random noise with unit variance to the nature state at

every grid point, so that all 40 grid points are observed.

The observation and data assimilation frequency is cho-

sen to be every 0.05 time units. Hereafter, this 0.05 time

units is referred to as one data assimilation step (DAS).

The ensemble sizem is fixed at 8. To mitigate the impact

of data assimilation parameters on discussion, we use the

adaptive covariance inflation method of Miyoshi (2011).

The prior inflation variance is fixed at 0.0016 (5 0.042).

Following Miyoshi (2011), the inflation factors are esti-

mated at each grid point adaptively. The localization

scales are manually optimized for each experiment.

To investigate the sensitivity to the observation er-

rors, two experiments are performed with different ob-

servation error settings (Table 1). Experiment 1 uses a

spatially uniform observation error with its variance

being 1.0. For Experiment 2, each observation has

different observation error variances from 0.05 to 2.0

with a 0.05 increment. The different observation error

variances are assigned to random locations and are fixed

through the experimental period. Data assimilation cy-

cles for 160 600 DAS including a 14 600 DAS for the

spinup are performed to manually optimize the locali-

zation length scale s, so that the analysis RMSE are

minimized. The optimized localization scales s are also

included in Table 1. For this optimization, assimilation

orders are determined randomly at every assimilation

step for the serial EnSRF. Special treatments on local-

ization, such as a regulated localization technique

(Nerger et al. 2012) and adaptive localization methods

(e.g., Bishop and Hodyss 2009a,b), are beyond the scope

of this paper.

With the serial EnSRF, we test the ordering rules

considered in section 3. Randomly generated assimilation

orders N for the BEST-T and WORST-T traces, and

N0 for the BEST-FO WORST-FO traces are set to be

N 5 1000 and N0 5 25, respectively. Again, N and N0

denote the number of assimilation orders for the BEST-T

and WORST-T traces, and the BEST-FO and WORST-

FO traces, respectively. Here, N0 is chosen to be much

smaller than N because the BEST-FO and WORST-FO

traces require expensive additional forecast computa-

tions. The timewindow parameters (t_fcst and t_window)

for the BEST-FO and WORST-FO traces are also

optimized manually so as to minimize the RMSE and

included in Table 1. For the RANDOM trace, we per-

form 100 parallel experiments because this experiment

strongly depends on the randomnumbers. For theEFSO-

BtoW and EFSO-WtoB, we determine the experimental

setting following Kalnay et al. (2012; cf. sections 4a and

4c). The forecast time for the error verifications is fixed at

8 DAS. The l-2 norm is used to measure the forecast er-

rors. The localization in the EFSO should account for the

propagation of the information from observations at the

analysis time (Hotta 2014). The localization center

shifts 10.15 grids per DAS to consider the propagations

(Kalnay et al. 2012).

d. Results

Figure 4 indicates the time series of RMSEs for ex-

periment 1 of the BEST-T trace, WORST-T trace, and

LETKF configurations for 120 consecutive DAS sam-

pled from a total of 146 000 DAS. Again, we define the

RMSE relative to the nature run (i.e., truth). This period

is selected arbitrarily, not intentionally, to represent the

general tendency of the time series for the entire 146 000

DAS. At the initial time of the spinup period, all ex-

periments have the same prior state xf and error co-

variance Pf. After the first assimilation step, each

experiment has its own state x and error covariance P

TABLE 1. Experimental setting of observation error variances,

manually optimized localization length scale s, and manually op-

timized time window parameters (t_fcst and t_window) for the

BEST-FO and WORST-FO traces.

Expt 1 Expt 2

Observation error variance 1.0 Random order 0.05–2.0

Localization scale for the serial

EnSRF (grid points)

5.0 5.0

Localization scale for the

LETKF (grid points)

5.0 5.0

Time window parameters for the

BEST-FO and WORST-FO

traces (DAS)

t_fcst 5 8

t_window 5 16
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cycled through data assimilation. Most of the time,

RMSEs of the BEST-T trace appear to be lower than

those of the WORST-T trace in both forecast and

analysis steps. The WORST-T trace shows lower

RMSEs than the BEST-T trace occasionally, because

each experiment has its own data assimilation cycle. The

results imply that the assimilation order of the serial

EnSRF could potentially cause significant differences in

analysis accuracy. The RMSEs of the LETKF are lower

than those of the WORST-T trace in most of the time,

while the RMSEs of the LETKF are slightly higher than

those of the BEST-T trace in some periods.

Figure 5 shows the average RMSEs over 146 000 DAS

for the two experiments. To test the robustness of the

results, all experiments are repeated 20 times. Boxes and

error bars represent the average and standard deviation

of the 20 parallel experiments. The BEST-T trace always

shows the lowest RMSE. By contrast, the WORST-T

trace always shows the highest RMSE. The LETKF and

average of the RANDOM trace show almost the same

RMSEs. Since the RMSEs of the BEST-T and WORST-

T traces are beyond the range spanned by the minimum

and maximum RMSEs of the RANDOM trace, we infer

the significance of the lowest and highest RMSEs of the

BEST-T and WORST-T traces. The BEST-FO trace

consistently shows lower RMSE than the RANDOM

trace, while the WORST-FO trace shows higher RMSE

than the RANDOM trace. The average RMSEs of the

BEST-FO and WORST-FO traces are close to the min-

imum and maximum RMSEs of the RANDOM trace.

The assimilation orders with the specific five rules,

from OMT-Asc to W08 in appendix A (see Table A1),

have little impact on analysis accuracy; their RMSEs are

within the range of the RANDOM traces. However, the

lower RMSEs in the ascending order of jyo 2 Hxtj
(OMT-Asc) and the descending order of jHxf 2 Hxtj
(BMT-Dsc) are observed consistently in the two ex-

periments. Their RMSEs are almost equal to the mini-

mum RMSE of the RANDOM trace. It implies that it

may be better to assimilate the better observations

earlier to improve the analysis. The W08 rule also

shows a small difference in RMSE compared to the

average of the RANDOM trace, but slightly out-

performs the RANDOM trace in the two experiments.

Finally, the EFSO rules change the RMSE signifi-

cantly. Again, the EFSO estimates how much each ob-

servation reduces or increases the forecast error. The

mean RMSEs of the EFSO-WtoB and EFSO-BtoW are

almost equal to that of the BEST-T and WORST-T

traces. Namely, we had a significant improvement by

ordering observations from worse to better impacts with

the EFSO. Further discussion on this result is conducted

in the next section. The above results and discussion are

consistent across the two experiments.

The experiments demonstrate that different assimi-

lation orders can change the analysis accuracy as shown

by the BEST-T, WORST-T, BEST-FO, WORST-T,

EFSO-BtoW, and EFSO-WtoB rules. These changes

are supported by statistical inference (see appendix C

for details). The W08 rule shows slightly lower RMSE

than the average of RANDOM trace in the two exper-

iments. The statistical inference, however, does not

suggest significant improvement by the W08 rule.

5. Discussion

a. Changes in RMSE during the serial assimilation
process

The numerical experiments demonstrate significant

improvements by sorting observations from worse to

better impacts with the EFSO.Here, we explore how the

ordering rules with the EFSO improve and degrade the

analysis experimentally. Using the same conditions (i.e.,

the same ensemble members, observations, and data

assimilation parameters), we conduct the serial EnSRF

for following assimilation orders: randomly selected,

BEST-T, WORST-T, W08, EFSO-BtoW, and EFSO-

WtoB orders. N15 investigated changes in RMSE and

ensemble spread in the serial assimilation process.

FIG. 4. Time series of RMSE for (a) forecast and (b) analysis steps of experiment 1. Red, blue, and green lines represent the RMSE of

the BEST-T trace and WORST-T trace of serial EnSRF and the LETKF, respectively. RMSEs during the last 120 DAS are shown. This

period is selected arbitrarily. The abscissa shows the number of assimilation steps.
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Inspired by N15, we investigate the changes in RMSE

and ensemble spread with the different assimilation

orders. All computations in this subsection are con-

ducted under the design of experiment 1. The initial

conditions are prepared by the RANDOM trace with

1460 DAS for the spinup period.

Figures 6a and 6b show changes in RMSE and en-

semble spread as a function of the number of assimilated

observations. Because we use the same initial condi-

tions, all RMSEs and ensemble spreads are identical at

the start of the experiment. With the EFSO-BtoW, the

RMSE decreases rapidly for the initial 10 observations,

FIG. 5. Average RMSEs over 146 000 DAS of (a) experiment 1 and (b) experiment 2 for the

LETKF, serial EnSRF with the BEST-T, WORST-T, RANDOM, BEST-FO, and WORST-

FO traces. The average/minimum/maximum RMSEs of 100 runs of the RANDOM traces are

shown in black bars (RANDOM-Ave/Min/Max). The magenta bars represent the RMSEs of

serial EnSRFwith assimilation orders using seven different rules: OMT-Asc, OMT-Dsc, BMT-

Asc, BMT-Dsc, W08, EFSO-BtoW, and EFSO-WtoB. All 146 000 DAS experiments are

performed 20 times using different realizations of random numbers and the nature run. Bars

and error bars in the panels represent average and standard deviation of the 20 simulations.

Dashed lines represent the minimum, average, and maximum RMSEs of the random traces.
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and gradually increases after 28th observation (blue line

in Fig. 6a). On the other hand, the RMSE increases with

earlier observations, and decreases with later observa-

tions with the EFSO-WtoB. We repeat the serial data

assimilations using 1460 initial conditions, and their

averages are shown in Figs. 6c and 6d. The 1460 initial

conditions are also prepared by the RANDOM trace

with 1460–2919 DAS for the spinup (i.e., 1460 different

spinup periods). Figure 6c shows increase and decrease

in RMSEs by earlier and later observations with the

EFSO-WtoB. A similar curve is also observed by the

BEST-T (Fig. 6d). On the other hand, the EFSO-BtoW

andWORST-T orders show opposite behaviors that the

RMSEs are decreased by earlier observations, and

FIG. 6. Changes inRMSEand ensemble spread (solid and dashed lines) as a function of the number of assimilated

observations for (a),(b) single case and (c),(d) average of 1460 cases. (e),(f) The last three observations of (c),(d).

(a),(c),(e) RMSEs of the randomly selected (black), EFSO-BtoW (blue), EFSO-WtoB (red), and W08 (purple)

orders. (b),(d),(f) RMSEs of the randomly selected (black), BEST-T (red), and WORST-T (blue) orders.

(g),(h) The ratios at which the EFSO-WtoB is better than the ESFO-BtoW, and the BEST-T is better than

the WORST-T among 1460 cases as a function of the number of assimilated observations.
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increased by later observations. The EFSO-WtoB out-

performs the EFSO-BtoW at assimilation of the 40th

observation, and the BEST-T trace outperforms

WORST-T trace at assimilation of the 39th observation,

respectively (Figs. 6e,f). It does not necessarily mean

that only the 39th and 40th observations contribute to-

ward the improvement and degradation. The differences

in the final analysis are the result of accumulated im-

pacts of the assimilated 40 observations.

Figures 6g and 6h show the ratios at which the EFSO-

WtoB is better than the ESFO-BtoW, and the BEST-T is

better than the WORST-T among the 1460 cases as a

function of the number of assimilated observations. From

the 1st to 39th observations, the EFSO-WtoB is worse

than the EFSO-BtoW for more than 85% of the 1460

cases. On the other hand, the EFSO-WtoB outperforms

the EFSO-BtoW after assimilating 40 observations for

more than 85% of the 1460 cases, implying that the

EFSO-WtoB statistically results in the better analysis

than the EFSO-BtoW. This experiment assimilates the

same observations from the same 1460 initial conditions.

While their final analyses with the EFSO-WtoB and

EFSO-BtoW show small differences in RMSE, the small

differences accumulate in time and can cause significant

impacts (Fig. 5). The similar curve is also observed in

Fig. 6h comparing the BEST-T and WORST-T traces.

If we determine the assimilation order randomly, the

RMSEreduces gradually during 40 observations (Figs. 6c,d).

It implies that all observations in the serial processes are

expected to reduce the error equivalently with the ran-

domly selected order. The ensemble spread also de-

creases continuously with the randomly selected

assimilation order. On the other hand, the W08 order

shows the largest reduction in the ensemble spread by

the earlier observations due to determination of the

assimilation order according to the variance reduction.

The W08 order also results in a larger reduction of

RMSE by earlier observations compared to the ran-

domly selected order. Interestingly, final analysis en-

semble spreads after assimilating 40 observations are

almost identical while their paths to the analysis are

different (Figs. 6c–f). This example shows no significant

difference in the analysis RMSE between the W08 and

randomly selected orders. TheEFSO-WtoB andBEST-T

orders outperform the randomly selected order slightly.

This study obtains a superior performance for the

EFSO-WtoB rule. We have not reached a mathematical

explanation why the EFSO-WtoB outperforms the

EFSO-BtoW. Further experiments with more realistic

systems are needed to investigate whether or not the

EFSO-BtoW is really a beneficial ordering rule to im-

prove the analysis more generally. However, we exper-

imentally demonstrate that the EFSO-WtoB order is

similar to the BEST-T trace in terms of change in RMSE

during the serial assimilation process. This may imply

that the EFSO-WtoB order may be essential to improve

the analysis for the L96 experiments.

One may wonder how the analysis accuracy would

change if we assimilate only better observations using the

EFSO. However, assimilating only better observations is

not an easy issue. Figure 6 shows that the ensemble spread

decreases nearly linearly with the number of assimilated

observations while the error variances drop quickly with

better observations. Therefore, if we assimilate only better

observations, the ensemble spread becomes much larger

than the actual error variance. We need to develop an

algorithm to find a proper ensemble spread when assimi-

lating only better observations, and these additional con-

siderations are beyond the scope of this study.

b. Sensitivity to the ensemble size

Finally, we investigate the sensitivity of the assimilation

order to the ensemble size.Weperformexperiments 1 and

2 with the LETKF, and serial EnSRF using RANDOM,

BEST-T, WORST-T, BEST-FO, WORST-FO, W08,

EFSO-BtoW, and EFSO-WtoB ordering rules by chang-

ing the ensemble sizes tom5 4, 8, and 16. The localization

length scales and time window parameters (t_fcst and

t_window) are manually optimized and are shown in

Table 2. Note that the manually tuned localization scales

for the serial EnSRF (Kloc) can be larger than those for

the LETKF (Rloc) as pointed out by Greybush et al.

(2011). Figure 7 shows the average RMSEs over 146000

DAS in experiments 1 and 2. We repeated the 146000

TABLE 2. Manually optimized localization length scale s and time window parameters (t_fcst and t_window) for BEST-FO and

WORST-FO traces for ensemble sizes 4, 8, and 16.

Ensemble size m 4 8 16

Expt Expt 1 Expt 2 Expt 1 Expt 2 Expt 1 Expt 2

Localization scale for the serial EnSRF (grid points) 2.0 2.0 5.0 5.0 9.5 9.5

Localization scale for the LETKF (grid points) 2.0 2.0 5.0 5.0 9.0 8.5

Time window parameters for BEST-FO and WORST-FO traces (DAS) t_fcst 5 8 t_fcst 5 8 t_fcst 5 8

t_window 5 8 t_window 5 16 t_window 5 20
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DAS experiment 20 times with different realizations of

random numbers. The standard deviations averaged over

the 20 experiments are shown in Fig. 7.

With 4 and 8 ensemble members, the BEST-T and

WORST-T trace shows the smallest and largest RMSEs,

respectively. On the other hand, the EFSO-WtoB

slightly outperforms the BEST-T trace with 16 ensem-

ble members. Namely, EFSO found better and worse

assimilation orders than the BEST-T and WORST-T

traces without knowing the truth. Kalnay et al. (2012)

pointed out that EFSO gives better estimations of ob-

servational impact as the ensemble size increases. With

the better observational impact estimations by EFSO

with 16 ensemble members, we obtain the better RMSE

than the BEST-T. This implies that the EFSO-WtoB

may be the best ordering rule to obtain better analysis

statistically without knowing the truth for the L96model

experiments.

TheBEST-FOandWORST-FO traces shows lower and

higher RMSEs than the average of the RANDOM trace.

The LETKF shows almost the sameRMSE as the average

of theRANDOMtrace. TheBEST-T,WORST-T, BEST-

FO, and WORST-FO traces show large differences from

the average of the RANDOM trace as the ensemble size

decreases. This suggests that the assimilation order in the

serial EnSRFhavemore impact on analysis accuracywhen

analyses are less accurate because of smaller ensemble

size. On the other hand, we observe an insignificant dif-

ference between the RANDOM trace and W08 rule with

four ensemble members. The improvement by the W08

may increase as the ensemble size increases.

6. Summary

In this study, we investigated the potential impact of the

assimilation order of observations with the serial EnKF.

We first demonstrated theoretically that the assimilation

order causes different analyses in the serial treatment of

observations if covariance localization is applied in ob-

servation space. This corroborates N15 who described that

changing the assimilation order causes different analyses.

With a two-dimensional problem, this study demonstrated

that the impact is two orders ofmagnitude smaller than the

analysis increments and error covariance if the two iden-

tical observation error variances are the same size as the

two identical state error variances.

Based on the L96 model experiments with the serial

EnSRF and LETKF, we reach the following conclusions.

The experiments of the BEST-T and WORST-T traces of

serial EnSRF suggest that modifying the assimilation or-

ders of the serial EnSRF result in significant differences in

analysis accuracy. Also, the LETKF shows no significant

difference from the RANDOM trace of the EnSRF in our

experimental design.

We improved the analysis significantly by assimilating

observations from theworse to better order using theEFSO,

which estimates how much each observation reduces or in-

creases the forecast error.We experimentally demonstrated

that the EFSO-WtoB order showed a similar change in

RMSE to theBEST-Tduring the serial assimilation process.

Another better ordering rule, the BEST-FO trace, is also

designed using future observations to improve performance.

It is basedupon thepremise that a better forecast is generally

FIG. 7. As in Fig. 5, but showing the LETKF,RANDOM,BEST-T,WORST-T, BEST-FO,WORST-FO traces,W08, EFSO-BtoW, and

EFSO-WtoB rules for (a)–(c) experiment 1 and (d)–(f) experiment 2. (a),(d); (b),(e); and (c),(f) show the results with ensemble sizes 4, 8,

and 16, respectively.
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produced by a better analysis, in this case a better observa-

tion order during the analysis. With an accurate EFSO, we

obtained a better RMSE than the BEST-T, which finds

better assimilation orders experimentally using the truth.

The ordering rules based on the BEST-FO trace can

be applied practically in reanalysis experiments. On the

other hand, we can apply the EFSO-WtoB rule for op-

erational NWP forecasts. Hotta (2014) and Hotta et al.

(2017) demonstrated with an operational global NWP

system that we can evaluate impacts of observations by

EFSO with only 6-h forecasts (cf. Fig. 1 of Hotta et al.

2017). They proposed a proactive quality control (PQC)

method, which detects detrimental observations 6 h af-

ter the analysis using EFSO, and discussed that the PQC

may be used in a real-time operational system. We can

apply the EFSO-WtoB rule for operational NWP in the

same manner. While additional experiments and verifi-

cations are needed withmore realistic models, the EFSO-

WtoBmay be beneficial for operational data assimilation

systems. Also, it would be worth investigating whether

assimilating only better observations using EFSO can be

used as an advanced observation thinning. On the other

hand, we need additional computation to conduct the

EFSO-WtoB and BEST-FO assimilation orders.

This study performed only idealized L96 experiments,

and it is not trivial to determine if the findings can be di-

rectly applied to realistic geophysical data assimilation

problems. However, we demonstrated a potential to im-

prove the analysis significantly in the serial EnKF only by

changing the assimilation order. In the practical geo-

physical reanalysis, the ensemble size is much smaller than

the degrees of freedom of the dynamical system. Appli-

cation to high-dimensional, realistic systems remains a

subject of future research.
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APPENDIX A

Simple Two-Dimensional Problem

This appendix demonstrates detailed equations of the

simple two-dimensional problem in section 2 (see Tables

A1 and A2). Here we discuss three localization methods:

for the background error covariance (Ploc), the Kalman

gain (Kloc), and the observation error covariance (Rloc).

The equations are derived manually, and also verified

with a software ‘‘mathematica version 9.0.’’

If we assimilate the two observations without locali-

zation (L 5 1), simultaneous assimilation and serial as-

similation result in the same solutions as follows:
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If we localize Pf in the model space (Ploc), the si-

multaneous assimilation and serial assimilations in ei-

ther order result in the same Kalman gain Ka, analysis

state xa and error covariance Pa:
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If we conduct serial data assimilation with Ploc, we as-

similate the first observation y1 and obtain xa and Pa:
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Next, these xa and Pa are used as xf and Pf for the second

observation y2, and we obtain the conclusive analysis xa

and Pa [Eqs. (A4) and (A5)].

The simultaneous assimilation and serial assimila-

tions in each order result in different solutions with

observation space localization. If we assimilate the

two observations simultaneously with Kloc, the Kal-

man gain Ka and analysis state xa are same as those

with Ploc. However, the analysis error covariances Pa

are different for Ploc and Kloc because of different

background error covariances (i.e., with and without

localization for Pf; cf. section 2). The analysis error

covariances Pa with Kloc for simultaneous assimila-

tion is as follows:
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TABLE A1. The list of 13 ordering rules tested in this study.

Name

Using

truth Ordering rule

RANDOM

trace

Randomly generated

assimilation order

BEST-T

trace

3 Best sampled trace

relative to the truth

WORST-T

trace

3 Worst sampled trace

relative to the truth

BEST-FO

trace

Best sampled trace relative

to future observations

WORST-FO

trace

Worst sampled trace

relative to future observations

OMT-Asc 3 Ascending order of jyo 2 Hxtj
OMT-Dsc 3 Descending order of jyo 2 Hxtj
BMT-Asc 3 Ascending order of jHxf 2 Hxtj
BMT-Dsc 3 Descending order of jHxf 2 Hxtj
OMB-Asc Ascending order of jyo 2 Hxfj
OMB-Dsc Descending order of jyo 2 Hxfj
R-Asc Ascending order of R

R-Dsc Descending order of R

HPHT-Asc Ascending order of HPfHT

HPHT-Dsc Descending order of HPfHT

W08 According to error variance

reduction (Whitaker et al. 2008)

EFSO-

BtoW

Sorting observations from

better to worse impact with EFSO

EFSO-

WtoB

Sorting observations from

worse to better impact with EFSO

TABLEA2. The p values (%) of theWilcoxon signed rank test for

each experiment relative to the RANDOM trace. Small p values

,1% (italic numbers) represent rejection of the null hypothesis,

and therefore imply there is a significant difference. Large p values

correspond to no significant difference. Percentage values of 0.00 in

the table indicate a p value , 0.005%.

p values (%)

Ordering rule Expt 1 Expt 2

LETKF 57.87 10.60

BEST-T trace 0.00 0.00

WORST-T trace 0.00 0.00

BEST-FO trace 0.00 0.00

WORST-FO trace 0.00 0.00

OMT-Asc 0.00 0.01

OMT-Dsc 0.00 22.21

BMT-Asc 0.04 0.30

BMT-Dsc 2.07 0.19

OMB-Asc 52.51 44.47

OMB-Dsc 40.42 8.41

R-Asc — 3.23

R-Dsc — 3.32

HPHT-Asc 61.37 35.40

HPHT-Dsc 64.28 19.21

W08 80.35 31.30

EFSO-BtoW 0.00 0.00

EFSO-WtoB 0.00 0.00
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In the serial data assimilation with Kloc, we assimilate

the first observation y1 and update xa and Pa:
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Next, these xa and Pa are used as xf and Pf for the second

observation y2, and the conclusive analysis xa and Pa are

as follows:
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If we assimilate y2 first, the conclusive analysis xa is as

follows:

xaKloc
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The analysis error covariance PaKloc
y2/y1

is the same as PaKloc
y1/y2

.

Finally, we consider Rloc of the LETKF. Rloc

multiplies 1/L to elements of the observation error

covariance matrix (Greybush et al. 2011). The LETKF

computes the local Kalman gains (KRLoc
x1 and KRLoc

x2 ) for

x1 and x2 independently:
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Using the Kalman gains, we obtain the analysis as

follows:
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TheLETKFassimilates observations simultaneouslywhile

the analyses are computed independently for each com-

ponent of x. The LETKF updates Pa implicitly, therefore,

off-diagonal terms of Pa are not shown in Eq. (A20).

APPENDIX B

Other Possible Ordering Rules

This appendix describes six ordering rules and their

results that are not described in the main manuscript.

We tested assimilation ordering rules with ascending/

descending order of jyo 2 Hxfj (observation minus first

guess; hereafter OMB), R (observation error variance),

and HPfHT (forecast error variance in the observation

space).We consider that the ascending order of jyo2Hxfj
may result in a better analysis as does the ascending order

of jyo 2 Hxtj (Fig. 5). We select the ordering rules with R

to investigate whether observations having smaller error

should be assimilated earlier or later. We test the order-

ing rule with HPfHT to investigate whether observations

having smaller background error in the observation space

should be assimilated earlier or later.

All assimilation orders are summarized in Table A1.

We conducted experiment 1 and 2 for the six ordering

rules and found they are not significantly different from

that of the RANDOM trace.

APPENDIX C

Statistical Hypothesis Tests

To test the difference in analysis accuracy in the sec-

tion 4d, statistical inference is performed with the Wil-

coxon Signed-Rank Test (see our Fig. C1; Wilcoxon

1945). TheWilcoxon signed rank test is a nonparametric

test for comparing paired samples. Since the RMSE has

temporal correlations, 3650 samples (1 sample per 800

DAS) of the total 2 920 000 RMSEs over 2 920 000 DAS

are used for the statistical inference. This way, the

temporal correlations between RMSEs near in time are

not included in the statistical inference. The RANDOM

trace is selected arbitrarily from the 100 simulations for

each 146 000 DAS. The level of the hypothesis testing is

set to be 1% (or a 99% significance level). The null

hypothesis is that there is no significant difference be-

tween the two experiments. Namely, the rejection of the

null hypothesis corresponds to there being a significant

difference between the two experiments.

We compute the p values for each experiment relative

to the RANDOM trace (Table A2). The p values be-

tween the random trace andLETKF are large. Therefore,

the analysis accuracy of the LETKF cannot be distin-

guished statistically from that of the serial EnSRF. Sim-

ilarly, the ordering rules from OMB-Asc to HPHT-Des

are not significantly different from the RANDOM trace.
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Also the analysis accuracy of the W08 cannot be distin-

guished statistically from the RANDOM trace. By con-

trast, the RMSEs of the BEST-T,WORST-T, BEST-FO,

WORST-FO, EFSO-BtoW, and EFSO-WtoB are sig-

nificantly different from that of the RANDOM trace at

the 99.995% level. Relative to the OMT-Asc, OMT-Dsc,

BMT-Asc, and BMT-Dsc, the RANDOM trace is sta-

tistically different in most of the experiments.
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