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ABSTRACT

This study examines amultimodel comparison of regional-scale convection-permitting ensembles including

both physics and initial condition uncertainties for the probabilistic prediction of Hurricanes Sandy (2012)

and Edouard (2014). The model cores examined include COAMPS-TC, HWRF, and WRF-ARW. Two

stochastic physics schemeswere also applied using theWRF-ARWmodel. Each ensemble was initializedwith

the same initial condition uncertainties represented by the analysis perturbations from a WRF-ARW-based

real-time cycling ensemble Kalman filter. It is found that single-core ensembles were capable of producing

similar ensemble statistics for track and intensity for the first 36–48 h of model integration, with biases in the

ensemble mean evident at longer forecast lead times along with increased variability in spread. The ensemble

spread of a multicore ensemble with members sampled from single-core ensembles was generally as large or

larger than any constituent model, especially at longer lead times. Systematically varying the physic pa-

rameterizations in the WRF-ARW ensemble can alter both the forecast ensemble mean and spread to re-

semble the ensemble performance using a different forecast model. Compared to the control WRF-ARW

experiment, the application of the stochastic kinetic energy backscattering scheme hadminimal impact on the

ensemble spread of track and intensity for both cases, while the use of stochastic perturbed physics tendencies

increased the ensemble spread in track for Sandy and in intensity for both cases. This case study suggests that

it is important to include model physics uncertainties for probabilistic TC prediction. A single-core multi-

physics ensemble can capture the ensemble mean and spread forecasted by a multicore ensemble for the

presented case studies.

1. Introduction

The substantial impacts of tropical cyclones (TCs) on

property and life make improvement of TC forecasts,

particularly TC track, intensity, and inland flooding,

crucial for public safety. Improving TC forecasts will

likely require a combination of better understanding of

TC dynamics and inner-core processes along with ad-

vanced dynamical weather models that incorporate re-

mote and in situ observations with advanced data

assimilation techniques.

In the United States, there are several regional-scale

high-resolution dynamical models that are configured

independently to forecast TC track and intensity in real

time. Each model has its own dynamic core (hereafter

model core), including, but not limited to, the prog-

nostic variables used to represent the atmospheric

state, formulations, and numerical solvers of funda-

mental equations that govern atmospheric behavior,

map projections, and the horizontal and vertical grid

structure. The parameterizations of subgrid-scale pro-

cesses also vary across models. These physical param-

eterizations include shortwave and longwave radiation,

microphysical processes, cumulus parameterization for

coarse model grids, planetary boundary layer (PBL)

schemes, and surface physics representing moisture

and energy fluxes; each has its own assumptions and

complexity. Each choice of physical parameterization

can have a substantial impact on TC structure, track,

and/or intensity (Sundqvist 1970; Willoughby et al.

1984; Wang and Holland 1996; Braun and Tao 2000;
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Green and Zhang 2013, 2014; Fovell and Su 2007;

Fovell et al. 2009, 2010; Bu et al. 2014; Melhauser and

Zhang 2014).

The use of ensembles may partially address model

errors related to deficiencies in the model core and/or

physical parameterizations. Generally, a consensus or

ensemble mean forecast—either with the same model

core, but varying initial conditions and/ormodel physics,

or with a combination of multiple model cores—provides

lower RMS error forecasts compared to forecasts by any

individual member or component model (e.g., Goerss

2000; Sampson et al. 2008), primarily by canceling ran-

dom forecast errors through ensemble averaging (Toth

and Kalnay 1993). The ensemble spread provides in-

formation about forecast uncertainties (e.g., Tracton and

Kalnay 1993; Palmer 2002).

For any ensemble prediction system, it is important

that the spread be sufficient to cover all sources of fore-

cast error; otherwise, the ensemble is underdispersive, a

common issue with current operational and research

ensemble systems (e.g., Novak et al. 2008; Torn 2016).

Methods for mitigating deficiencies in the ensemble

spread include 1) improving the representation of the

initial condition uncertainty (e.g., Zhang et al. 2006;

Hohenegger and Schär 2007; Houtekamer et al. 2009),

2) improving the representation of the lateral bound-

ary condition uncertainty of regional models (e.g.,

Nutter et al. 2004b,a; Torn et al. 2006; Romine et al.

2013), and 3) accounting for forecast model un-

certainties by using multicore ensembles, single-core

multiphysics ensembles (e.g., Leslie and Fraedrich

1990; Krishnamurti 1999; Aberson 2001; Vijaya

Kumar et al. 2003; Meng and Zhang 2007, 2008a,b;

Johnson and Wang 2012; Qi et al. 2014), and/or sto-

chastic physics ensembles (e.g., Shutts 2005; Palmer

et al. 2009; Romine et al. 2014; Berner et al. 2015). For

example, a study by Lang et al. (2012) found that

using a combination of initial condition perturbations

and stochastic physics can increase the TC track

spread to match the average error in the European

Centre for Medium-Range Weather Forecasts en-

semble. Another study by Torn (2016) found that

combinations of initial condition and physics un-

certainties are needed to produce an ensemble spread

that is closer to the mean error in the TC intensity

forecasts.

The current study examines the impact of model

error on ensemble forecasts of TC track and intensity,

using an identical set of initial condition perturba-

tions with the analysis uncertainties derived from an

ensemble Kalman filter (EnKF) to initialize three

state-of-the-art TC-configured regional convection-

permitting models. Numerous ensemble experiments

with two selected TC events seek to elucidate 1) our

understanding of the practical limits of the pre-

dictability of these events given realistic initial con-

dition and forecast model uncertainties and 2) how

to best capture realistic forecast uncertainties using a

limited-size, convection-permitting, regional-scale en-

semble. To the best of the authors’ knowledge, no

previous study has tried to independently quantify the

evolution of model error using multicore ensembles

while controlling for initial condition uncertainties be-

tween models. In addition to using multicore ensembles,

this study also compares the impacts used to represent

model uncertainties, including different physical pa-

rameterizations and stochastic physics when using the

same forecast model (single core).More specifically, this

study seeks to evaluate the following questions: 1) How

does the evolution of the ensemble mean and spread

with the same initial conditions compare using different

models? 2) Is a single-core multiphysics ensemble suf-

ficient for representing model uncertainties in TC pre-

diction, or is there a benefit to using a multicore

ensemble? 3) Can a single-core single-physics ensemble

with stochastic physics and/or inflated initial condition

uncertainty impact the ensemble mean and spread

similarly to a multicore or multiphysics ensemble?

An overview of the two TC events is provided in

section 2, along with different model and physics

configurations, as well as the initial and boundary

condition generation methodology. Section 3 presents

results and discusses the ensemble performance be-

tween different physics and initial condition un-

certainties for both TC case studies. Section 4 provides

concluding remarks.

2. Methodology

a. Study cases

Hurricanes Sandy (2012) and Edouard (2014) are

chosen for this study because of the large divergence

between the deterministic forecasts generated by dif-

ferent operational forecasting systems. Notably, Sandy

had a more difficult track forecast and Edouard had a

more difficult intensity forecast.

After developing in the northwest Caribbean Sea

and traversing north over Jamaica and Cuba, Sandy

restrengthened into a category 1 hurricane and turned

northeast while moving north of the Bahamas. It

paralleled the eastern seaboard and, subsequently,

took a northwest turn by 1200 UTC 29 October,

briefly intensifying back into a category 2 hurricane

before weakening and making landfall in New Jersey

(Blake et al. 2013). The official NHC track forecast
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(OFCL) error for Sandy was below the OFCL 5-yr

mean track forecast error at all lead times, with the

Global Forecasting System (GFS) ensemble mean

performing slightly better than OFCL for the first 48 h

(Blake et al. 2013). In this study, forecasts were ini-

tialized at 0000 UTC 26 October when the storm was

moving toward the northwest over the Bahamas. At

this initialization time, operational and experimental

ensemble forecasts had both landfalling and out-to-

sea trajectories (refer to Fig. 1 in Munsell and

Zhang 2014).

Edouard developed into a tropical depression at

1200 UTC 11 September and was subsequently named

at 0000 UTC 12 September. The storm tracked

around the southwestern side of a deep-layer sub-

tropical ridge while embedded in an environment with

favorable upper-level winds and sea surface tempera-

tures, but drier-than-normalmidlevel air (Stewart 2014).

The storm slowly strengthened in this environment and

underwent a period of rapid strengthening from 0600

UTC 14 September to 0600 UTC 15 September; its peak

intensity of 105 kt (where 1kt5 0.51ms21) was reached

at 1200 UTC 16 September (Stewart 2014). In this study,

forecasts were initialized at 1200 UTC 11 September

when the storm was a 15m s21 tropical depression. At

this initialization time, there are large uncertainties in

the intensity forecast generated by the experimental

real-time convection-permitting ensemble.

b. Models

This study uses three state-of-the-art nonhydrostatic

TC-configured regional models: the U.S. Navy’s Cou-

pled Ocean–Atmospheric Mesoscale Prediction Sys-

tem for Tropical Cyclones (COAMPS-TC; Hodur

1997; Doyle et al. 2012, 2014; Jin et al. 2014),1 the

Hurricane Weather Research and Forecasting Model

(HWRF; Tallapragada et al. 2014), and the Advanced

Research version of the WRF Model (WRF-ARW;

Skamarock et al. 2008). The 2014 Hurricane Fore-

cast Improvement Project (HFIP) configuration of

COAMPS-TC, the 2013 pseudo-operational configu-

ration of HWRF, and the 2014 Pennsylvania State

University WRF-ARW ensemble Kalman filter (PSU-

WRF-EnKF) real-time forecast system (Zhang et al.

2009, 2011; Weng and Zhang 2012, 2016) configuration

of WRF-ARW are used as the control ensembles for

each individual model. The configuration for each

model’s control ensemble reduces the sources of un-

certainty by using only the atmospheric component of

the model. All ensembles use identical prescribed sea

surface temperatures fromGFS forecasts and are run at

the same horizontal grid resolution. All models use

three domains, which are two-way nested, with vortex-

following inner domains. The domain configurations

can be found in Table 1 with an example domain setup

for Edouard shown in Fig. 1. Both WRF-ARW and

COAMPS-TC use a Mercator projection and have a

fixed outer domain while HWRF uses a rotated

latitude–longitude projection with a movable outer

domain that is centered on the TC during model

initialization.

c. Initial and boundary conditions

This study examines the evolution of forecast errors

due to initial condition and model errors within and

between models; thus, it is imperative that the initial

conditions be identical and the boundary conditions be

as close as possible between models, given the grid and

domain limitations. To accomplish this task, each

forecast is cold started using the model-specific ini-

tialization procedure [e.g., real (for WRF-ARW),

real_nmm (for HWRF), or coama (for COAMPS-

TC)] to interpolate identical global model output

(U,V,T, relative humidity, geopotential height, surface

pressure, sea level pressure, soil moisture, soil tem-

perature, surface skin temperature, and terrain height)

onto the model-specific grids to generate boundary

conditions.

To generate identical ensemble initial conditions,

the NCEP Global Data Assimilation System (GDAS)

0.58 3 0.58 latitude–longitude surface and standard

pressure level analysis at a given initialization time is

merged with the 60-member PSU-WRF-EnKF (Weng

and Zhang 2012) real-time 9- and 3-kmWRF domains

on a common 0.18 3 0.18 latitude–longitude horizontal
grid2 with standard vertical pressure levels. The PSU-

WRF-EnKF and GDAS output are linearly aver-

aged from only the PSU-WRF-EnKF output within a

300-km radius of the vortex center to only the GDAS

output beyond the 600-km radius,3 providing a

smooth transition in the far-field TC environment.

The PSU-WRF-EnKF generates 60 high-resolution

flow-dependent perturbed TC vortices with the

GDAS output providing identical synoptic environ-

ments away from the TC vortex in each ensemble.

Given the grid and domain limitations of each

1 COAMPS-TC is the registered trademark of the Naval Re-

search Laboratory.

2 The 0.18 horizontal spacing was chosen to reduce interpolation

errors, but stay within computing resource constraints.
3 The PSU-WRF-EnKF only assimilates observations within

800 km of the TC center.
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dynamic core, the operational GFS forecast from 6 to

120 h is used for each ensemble member to help con-

trol for uncertainties when defining dynamic-core-

specific boundary conditions. With this configuration,

the three-dimensional TC circulation and near-TC

environment (,600 km from TC center) are per-

turbed for each ensemble member while the larger-

scale synoptic environment is identical. Uncertainties

in large-scale initial conditions and physics are be-

yond the scope of the current study.

d. Single-core multiphysics and stochastic physics
sensitivity experiments

To examine the impact of using a single-core en-

semble with varying physical parameterizations, the

PSU real-time configuration of WRF-ARW (APSU;

Table 1) was systematically modified. The cumulus

parameterization (CP), microphysics scheme (MP),

planetary boundary scheme (PBL), shortwave and

longwave radiation schemes (RAD), and surface flux

settings (SFC) were all changed incrementally from

‘‘APSU like’’ (APS1) to ‘‘HWRF like’’ (APS5); the

physical parameterization differences from APSU

are listed in Table 2. As a result of computing re-

straints, the physics were additively modified, for

example, modifying SFC settings (APS1); modifying

SFC settings andMP (APS2); modifying SFC settings,

MP, and RAD (APS3), etc., to systematically

sample a combination of physical parameterization

schemes between the APSU-like and HWRF-like

configurations.

To examine the impact of stochastic physics on en-

semble mean and spread, this study modifies the

APSU ensemble with spatially and temporally corre-

lated perturbations using either the stochastic kinetic

energy backscatter scheme (SKEBS; Shutts 2005;

Berner et al. 2009) or stochastically perturbed pa-

rameterization tendencies (SPPT; Palmer et al. 2009;

TABLE 1. Model domain and physical parameterization settings for pseudo-operational versions of WRF-ARW (APSU), HWRF, and

COAMPS-TC (COTC).

Model Domain Cumulus physics Microphysics PBL Radiation Surface options

APSU D01: 27 km (379 3 244) Grell–Freitasa

(D01 only)

WSM6d Yonsei University

(YSU) schemeg
Dudhia shortwavej;

RRTM longwavek
Modified MM5

similarity

D02: 9 km (304 3 304) (WRF option 91)

D03: 3 km (304 3 304) PSU formulation

surface TC fluxn

Vertical levels: 43 Five-layer thermal

diffusion land surfaceModel top: 10 hPa

HWRF D01: 0.188 (216 3 432) New SASb

(D01 and D02)

Tropical

Ferriere
Modified GFSh GFDL shortwave

and longwavel
HWRF surface physics

D02: 0.068 (88 3 170) GFDL hurricane slab

model land surfaceD03: 0.028 (180 3 324)

Vertical levels: 43

Model top: 50 hPa

COTC D01: 27 km (379 3 244) Kain–Fritschc

(D01 only)

COAMPS

version 2

with drizzlef

Mellor–Yamada

2.5 schemei with

prognostic TKE

Fu–Lioum COAMPS surface

physicsoD02: 9 km (304 3 304)

D03: 3 km (304 3 304)

Vertical levels: 40

Model top: ;12 hPa

a See Grell and Freitas (2013).
b See Han and Pan (2011).
c See Kain and Fritsch (1993).
d See Hong and Lim (2006).
e See Ferrier (1994).
f See Rutledge and Hobbs (1983).
g See Hong et al. (2006).
h See Hong and Pan (1996).
i See Mellor and Yamada (1982).
j See Dudhia (1989).
k See Mlawer et al. (1997).
l See Fels and Schwarzkopf (1981).
m See Fu and Liou (1992).
n See Green and Zhang (2013).
o See Louis (1979).
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Romine et al. 2014; Berner et al. 2015). SKEBS is an

additive scheme, stochastically perturbing the model

state, while SPPT is a multiplicative scheme, sto-

chastically perturbing the total physical parameteri-

zation tendency.

SKEBS accounts for a model’s shortcomings in re-

producing the turbulent energy cascade from un-

resolved subgrid-scale processes. This scheme generates

random temporal and spatial stochastic forcing pat-

terns and adds the perturbations to the rotational u-

and y-wind components and to potential temperature.

For this study, the default configuration4 in WRF-ARW

v3.6 is used (Table 3) and the horizontal perturba-

tions are assumed constant with height. The pertur-

bations scales are in line with the results of Judt et al.

(2016), who found large-scale SKEBS perturbations

have the largest impact on the TC vortex and forecast

uncertainty.

SPPT accounts for uncertainties in deterministic

subgrid-scale physical parameterization schemes. It

generates a probabilistic solution by multiplying the

subgrid-scale physical parameterization total tendency

with a stochastic forcing pattern; the pattern generator is

similar to SKEBS. The pertinent SPPT parameters are

listed in Table 3. Like SKEBS, the horizontal pertur-

bations are assumed constant with height.

3. Results and discussion

a. Intermodel comparison: Evolution of ensemble
track and intensity

As a first step, it is important to see whether different

regional TC ensembles with an identical set of initial

perturbations (from the EnKF analysis uncertainty)

produce similar TC forecasts. A 20-member random

sample of the 5-day ensemble track and maximum 10-m

wind speed (hereafter intensity) forecasts for APSU,

HWRF, and COAMPS-TC (COTC) are shown in

Figs. 2a and 3a for Sandy and Figs. 4a and 5a for

Edouard. Each pseudo-operational model can generally

capture the track and spread for both cases, but sys-

tematic errors become evident at longer lead times.

Recall that each model is initialized from the same

blended global and regional analysis; thus, differences in

terms of both mean and spread between different en-

sembles can be attributed to the different physical pa-

rameterizations and/or dynamic-core configurations.

FIG. 1. Domain setup for the 1200 UTC 11 Sep 2014 initialization of Hurricane Edouard

for WRF-ARW (APSU; green), HWRF (cyan), and COTC (magenta). The D01 domain

(largest domain for each model) is globally fixed for APSU and COTC, but centers on the

TC for HWRF at initialization and is fixed for the remainder of the forecast. Domains D02

andD03 (telescoped fromD01 for each model) are two-way nested and vortex following for

all models, centered on the TC at initialization. Note that theAPSU andCOTC domains are

nearly identical and thus substantially overlap. Detailed domain settings can be found in

Table 1.

4 Parameter tuning for both SKEBS and SPPT was not per-

formed, which may lead to suboptimal results for tropical cyclones.

The parameter values are similar to those of Romine et al. (2014)

and Berner et al. (2015).
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The evolution of the ensemble tracks for Sandy in

Fig. 2a is consistent across models during the first 60 h,

but systematic divergence between the ensemble

means (Fig. 2b) becomes evident at longer lead times

as Sandy begins to curve back toward the northwest.

The COTC ensemble members track farther east

compared to the APSU members, while the HWRF

ensemble members are mostly centered on the NHC

best track. It is encouraging that all three models

capture the complex track divergence of Sandy. The

ensemble intensity forecasts are remarkably consis-

tent between models before landfall (;96 h; Fig. 3a).

Besides the low wind speeds of HWRF at initializa-

tion,5 COTC generally has a lower intensity over the

first 48 h compared with HWRF and APSU. At longer

lead times, prior to landfall (;60–96 h), all three

models capture the secondary reintensification of

Sandy, evident in the ensemble means (Fig. 3b), al-

though all of the models tend to intensify the TC 12 h

too early.

The evolution of Hurricane Edouard may depend on

the less predictable internal TC dynamics associated

with convective processes. These highly nonlinear

processes may be handled differently by different

model cores and/or physical parameterizations. The

APSU and COTC solutions (Fig. 5a) have a similar

pattern of evolution throughout the 5-day forecast,

strengthening the TC with similar mean magnitudes

(Fig. 5b). The HWRF intensities have a much larger

spread, with many cases not strengthening. The

strongest HWRF ensemble member is weaker than the

NHC best track and many of the APSU and COTC

members. There appears to be a link between the in-

tensity and track for Edouard; the weaker ensemble

members track farther west (Fig. 4a), which is also

evident in the farther west track of the HWRF en-

semble mean (Fig. 4b).

b. Intermodel comparison: Multicore ensemble

To objectively quantify the relationship between

the single-core ensembles and a multicore ensemble,

a 60-member ensemble (MCOR) is generated by

randomly sampling 20 ensemble members without

replacement from each of the APSU, HWRF, and

COTC ensembles. The absolute error of the ensemble

mean (hereafter error) and the ensemble spread of a

multicore ensemble provide an objective measure of

performance.

The track and intensity ensemble spread and error

for each individual model and the MCOR ensemble

are shown for Sandy in Figs. 6a,b and Edouard in

Figs. 7a,b.6 The NHC best track is used for verification

and is assumed to be perfect. For Sandy, the intensities

for all three models and MCOR are similar (Fig. 6b)

with no systematic difference between MCOR and the

individual model ensembles, except postlandfall. For

track, MCOR generally has a lower error and larger

spread than the individual model ensembles. At

shorter lead times up to approximately 36 h, the en-

semble spreads of APSU, HWRF, COTC, and MCOR

are all similar. After this period, MCOR covers a larger

solution space and has lower error as a result of the

averaging of the systematically farther west (east)

APSU (COTC) members. After APSU and HWRF

make landfall, the inclusion of the easterly COTC

tracks in MCOR shifts the ensemble mean east, in-

creasing the error.

Examining the ensemble spread and error for

Edouard, MCOR has the largest spread in intensity

(Fig. 7b) after approximately 24 h compared with the

TABLE 2. Model physical parameterization differences from the APSU configuration for sensitivity experiments APS1–5. Dashed lines

indicate the same scheme as in APSU is used.

Expt Cumulus physics Microphysics PBL Radiation Surface options

APS1 — — — — Garratt surface flux (isftcflx 5 2)

APS2 — Eta (Ferrier)b — — Garratt surface flux (isftcflx 5 2)

APS3 — Eta (Ferrier)b — GFDL shortwave–longwaved Garratt surface flux (isftcflx 5 2)

APS4 New SAS (D01 and D02)a Eta (Ferrier)b — GFDL shortwave–longwaved Garratt surface flux (isftcflx 5 2)

APS5 New SAS (D01 and D02)a Eta (Ferrier)b GFSc GFDL shortwave–longwaved Garratt surface flux (isftcflx 5 2)

a See Han and Pan (2011).
b See Rogers et al. (2001).
c See Hong and Pan (1996).
d See Fels and Schwarzkopf (1981).

5 HWRF does not use the diagnosed 10-m wind speeds from the

initial conditions during cold-start initialization, unlike APSU

and COTC.

6Only relative differences of the ensemble error and spread

between experiments will be analyzed as a result of the small

sample size of this study (Murphy 1988).
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individual model ensembles. The error and spread of

APSU and COTC diverge from HWRF after 48 h,

after which continued strengthening was observed in

APSU and COTC, but not in HWRF. The MCOR

ensemble performs well for the first 72 h with a smaller

intensity error and larger intensity spread than any

individual model ensembles. However, MCOR is

systematically degraded after approximately 72 h as

a result of the inclusion of HWRF.

The track ensemble spread for Edouard (Fig. 7a) is

consistent for all individual model ensembles for ap-

proximately the first 48 h. By the end of the forecast,

HWRF has the largest spread of the three individual

model ensembles. For shorter lead times (,48 h), the

MCOR ensemble has similar error and spread when

compared with the individual model ensembles, but

for times . 96 h it has the lowest error, and a spread

similar to that of HWRF. Including the HWRF model

in the MCOR ensemble substantially increases the

MCOR track spread. The track biases of the individ-

ual model ensembles at longer lead times average in

MCOR to reduce the track error relative to any in-

dividual component ensemble, similar to what was

found with Sandy.

Overall, common between both case studies, the

MCOR ensemble generally has the largest spread in

both track and intensity compared with any individual

model ensemble, but the error is case specific. An in-

creased ensemble spread at all lead times is evident for

the multicore ensemble.

c. Intramodel comparison: Multiphysics ensembles

Model physical parameterization schemes can strongly

influence forecasts of TC intensity (e.g., Lord et al. 1984;

Wang 2002; McFarquhar et al. 2006; Zhu and Zhang 2006;

Jin et al. 2007; Green and Zhang 2013, 2014) and track

(e.g., Fovell et al. 2010; Bu et al. 2014). Given that the

APSU, HWRF, and COTC ensembles have different

dynamic cores and unique physical parameterizations, it is

worth exploring if a single-core ensemble with systemati-

cally varying physical parameterizations (limited by

available physics parameterizations in WRF-ARW) can

perform similarly to the MCOR ensemble. The WRF-

ARWmodel is used to generate sensitivity experiments by

varying the model physical parameterizations from

‘‘APSU like’’ (APS1) to ‘‘HWRF like’’ (APS5). The

physical parameterization differences from the APSU

configuration are outlined in Table 2. A single-core mul-

tiphysics 60-member ensemble (MPHY) is constructed by

randomly sampling 12 members, without replacement,

from APS1–5 for comparison with the MCOR ensemble.

The ensemble mean track forecasts of the APS1–5

sensitivity experiments (Fig. 2c for Sandy and Fig. 4c

for Edouard, respectively) show the track sensitivity to

the physical parameterizations. Focusing on Sandy

(Fig. 2c), the APS3–5 ensembles have a mean eastward

displacement after approximately 60 h relative to

APSU, with APS5 resembling COTC rather than

APSU at longer lead times. The APS1–5 ensemble

track spread (Fig. 6c) has similar growth characteristics

and magnitude as APSU for the first 72 h, before any

substantial interaction with land. Comparing the

MPHY track error for Sandy to theAPSU, HWRF, and

COTC ensembles (Fig. 6a), the MPHY mean follows

APSUwith consistent increased error at approximately

24- and 72-h lead times, but overall, the error is reduced

relative to APSU as a result of the inclusion of

eastward-tracking members APS4–5 in the MPHY

ensemble. The spread of MPHY remains as large as or

larger thanAPSU at longer lead times and, generally, is

closer to the MCOR spread. Statistically testing7 the

track error distributions under the null hypothesis that

MPHY and MCOR are drawn from the same un-

derlying error distribution, MPHY and MCOR gener-

ally cannot be statistically differentiated for most lead

times. The lead times when the null hypothesis can be

rejected are indicated with gray asterisks (Fig. 6a).

For Edouard, both the track and intensity forecasts

are sensitive to the physical parameterization configu-

rations. The ensemble mean tracks for APS2–5 are

generally farther west (Fig. 4c) at longer lead times

compared to APSU. For this case, APS1–5 exhibit a

nonlinear monotonic decrease in TC intensity (Fig. 5c)

throughout a majority of the 5-day forecast, with a

larger decrease found at longer lead times. As briefly

discussed in section 3a, a track–intensity feedback may

TABLE 3. Stochastic physics parameters settings.

Parameter Value

SKEBS

Total backscattered dissipation rate for

streamfunction

1 3 1025 m2 s23

Total backscattered dissipation rate for

potential temp

1 3 1026 m2 s23

Decorrelation time for streamfunction

perturbations

6 h

Decorrelation time for temp perturbations 3 h

SPPT

Gridpoint variance 0.1

Decorrelation time 6 h

Decorrelation length scale 150 km

7A 10 000-sample bootstrapped Kolmogorov–Smirnov two-

sample test at the 95% significance level is performed between

MPHY and MCOR at each 6-h lead time.
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be present, with the weaker ensemble members gen-

erally tracking farther westward. Statistically testing

the track error distributions between MPHY and

MCOR (gray asterisks in Fig. 7a) indicates that the

differences between the error distributions at lead

times . 80 h are statistically significant. Focusing back

on one of the component ensembles of MCOR, the

COTC ensemble generally has farther eastward

tracking members at longer lead times. The physical

parameterization packages used in the APS1–5 con-

figuration are different from the COTC configura-

tion and are not able to capture many of the COTC

solutions. It is hypothesized that a well-designed

multiphysics ensemble with a sampling of physical

parameterizations that generate physically realistic

representations of atmospheric processes will alleviate

FIG. 2. Ensemble track for (a) APSU (green), HWRF (cyan), and COTC (magenta; 20 randomly selected en-

semble members from each ensemble). Ensemble mean tracks for (b) APSU (green), HWRF (cyan), COTC

(magenta), MPHY (gray), andMCOR (black); (c) APS1 (light gray) through APS5 (dark navy); and (d) stochastic

physics experiments SKEB (maroon) and SPPT (purple), as well as inflated initial perturbation experiments I20P

(yellow) and I50P (blue), for Hurricane Sandy initialized at 0000UTC 26Oct 2012. TheNHCbest-track data (black

line) are plotted every 6 h. The solid dots in (b)–(d) indicate the position every 6 h.
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this issue.8 The currentMPHY is not sampling the entire

solution space, only solutions similar to those of APSU

and HWRF.

The intensity spread for MPHY behaves similarly to

MCOR at shorter lead times, but is strongly influenced by

the poorly performing members of APS4–5 at longer lead

times. Generally, the single-core multiphysics ensemble

error distributions of track and intensity cannot be statis-

tically differentiated from a multicore ensemble for a ma-

jority of the lead times for both cases. It is hypothesized that

theMPHY ensemble may be deficient in solution diversity

compared to theMCOR ensemble as it is lacking solutions

that resemble the COTC ensemble. Nevertheless, it is clear

that a single-core ensemble can be configured to capture

TC uncertainties similarly to a different model-core en-

semble by modifying the physical parameterizations.

d. Intramodel comparison: Stochastic physics and
inflated initial condition ensembles

Other approaches commonly used to increase the en-

semble spread include stochastic physics and modifying

the initial perturbationmagnitude in the initial conditions.

The prior targets deficiencies in the forecast model, while

the latter targets deficiencies in the initial conditions. Two

different stochastic physics methodologies available in

WRF-ARW—SKEBS, and SPPT, which target different

model deficiencies—are used in this study to increase the

spread of the APSU single-core single-physics ensemble.

Additionally, a simple scalarmultiplicative inflation factor

of 1.2 (20%; I20P) or 1.5 (50%; I50P) is applied to the

control APSU EnKF perturbations (directly impacting

the transformed U, V, T, relative humidity, geopotential

height, surface pressure, and sea level pressure on the

interpolated global input grid).

FIG. 3. As in Fig. 2, but for ensemble intensity (m s21).

8 The COTC physical parameterizations have been developed

independently from WRF-ARW and HWRF and have unique

physics parameterizations based on different underlying assump-

tions (see Table 1), which are not available in WRF-ARW

or HWRF.
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The SKEB, I20P, and I50P experiments yield minimal

changes to the mean track (Fig. 2d) and intensity (Fig. 3d)

of Sandy. The SPPT experiment shifts the ensemble mean

eastward at lead times after 48h, more similar to HWRF,

and strengthens the system. Since SPPT impacts the

physical parameterizations directly, areas sensitive to ac-

tive physical processes will be heavily influenced. Focusing

on the track ensemble spread (Fig. 6e), both stochastic

physics and initial condition perturbations increase the

ensemble spread compared to APSU. SKEB has minimal

impact at all lead times, SPPT has the largest impact at

longer lead times, and I50P increases the spread through-

out the experiment. Statistically testing the track error

distributions between the various experiments andMCOR

(asterisks at the top of Fig. 6e) show an increased number

of lead times in all experiments that can be statistically

differentiated fromMCOR. For the intensity (Fig. 6f), it is

clear that SPPT substantially increases the spread at all

lead times, but severely overestimates the intensity, re-

sulting in larger errors. Tuning of the SPPT parameters

may help reduce the intensity error, but the configurations

used here are in line with previous convection-permitting

ensemble studies (e.g., Romine et al. 2014; Berner et al.

2015). The I50P experiment shows a slight improvement in

error aswell as increased spread at amajority of lead times.

For Edouard, the inflated initial condition experiments

have a larger ensemble track spread compared with the

stochastic physics (Fig. 7e), with SKEB and SPPT yield-

ing similar results. After approximately 36h, the error in

all of the sensitivity experiments increased relative to

MCOR, with SKEB causing minimal degradation while

SPPT and I50P substantially degraded the track forecast.

All stochastic physics and inflated initial condition en-

sembles had lower ensemble spread compared to

MCOR, missing eastward solutions generated by the

COTC ensemble at longer lead times. The unique phys-

ical parameterizations within COTC represent the di-

versity in model physics needed to improve TC forecasts.

The error distributions of track are statistically different

(asterisks at the top of Fig. 7e) from MCOR, indicating

these two experiments were not capable of covering the

diversity of solutions found in the COTC ensemble. For

intensity (Fig. 7f), I50P and SPPT had a relatively larger

impact than SKEB on intensity ensemble spread and

forecast error.

e. Initial condition versus model uncertainties: Track
and intensity measures

The pairwise root-mean-squared difference

(RMSD) between the same ensemble member of

FIG. 4. As in Fig. 2, but for Hurricane Edouard (2014) initialized at 1200 UTC 11 Sep 2014 with (d) additional

experiments HWR1 (yellow) and HWR2 (pink).
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different model configurations (dynamic core and/or

physical parameterizations) provides information

about the relative error growth between different

model configurations. The track RMSD for Sandy

(Fig. 8a) and both track and intensity for Edouard

(Figs. 8c,d) suggest that the systematic RMSD dif-

ferences between APS1–5 and APSU and between

APSU, HWRF, and COTC can be reproduced by

using a single-core ensemble with different physical

parameterizations. There is no clear systematic dif-

ference in intensity for Sandy (Fig. 8b). By modifying

the physical parameterizations, the APSU ensemble

can be configured to alter both the error growth rate

and magnitude, comparable to the uncertainties

found when using two different forecast models.

There is a general monotonic increase in pairwise

RMSD for both track (Fig. 8c) and intensity (Fig. 8d)

for Edouard from APS1 to APS5, with the pairwise

RMSD magnitude and growth rate proportional to

the forecast length.

f. Initial conditions versus model uncertainties:
Domain-integrated measures

The domain-integrated measure of the difference

between ensembles can be accomplished by examining

the evolution of the difference between kinetic and

thermal energy per unit mass at each model grid point

between experiments, called the difference total energy

(DTE; Zhang et al. 2002, 2004), which is calculated as

DTE
i,j,k

5
1

2
�
N

n51

(U 02
i,j,k,n 1V 02

i,j,k,n 1 kT 02
i,j,k,n), (1)

where U and V are the zonal and meridional wind com-

ponents, respectively; T is the air temperature; the primes

denote the difference between two experiments; i, j, and k

correspond to the Cartesian model grid indices of the

model domain; n is the ensemble index, N is the total

number of ensemble members, and k5Cp/T0 (whereCp5
1005Jkg22K21, the specific heat capacity of dry air at

273K, and T0 5 273K is a reference temperature used to

FIG. 5. As in Fig. 3, but for Hurricane Edouard (2014) initialized at 1200 UTC 11 Sep 2014 with (d) additional

experiments HWR1 (yellow) and HWR2 (pink).
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define the reference state). The intraensemble DTE (en-

semble spread) is calculated by differencing each ensemble

member and the ensemble mean within each ensemble

(e.g., for theu-wind component,U 0
n 5UAPSU

n 2UAPSU) and

the inter-ensemble DTE (pairwise difference) is calcu-

lated by differencing corresponding members between

different ensembles (e.g., for the u-wind component,

U 0
n 5UAPSU

n 2UHWRF
n ). Since each forecast model has its

own domain configuration (Fig. 1), all domain 1 (D01;

;27km) analyses and forecasts are interpolated onto a

0.258 3 0.258 grid with a common 508 3 508 static domain,

where all three model domains overlap. The common

FIG. 6. RMSE verified with NHC best-track data (solid line) and the ensemble spread (m s21; dashed line) at

6-hourly lead times for (left) track (km) and (right) intensity (m s21) of (a),(b) APSU (green), HWRF (cyan), COTC

(magenta), MPHY (gray), and MCOR (black); (c),(d) APS1 (light gray) through APS5 (dark navy); and (e),(f)

stochastic physics experiments SKEB (maroon) and SPPT (purple), as well as inflated initial perturbation ex-

periments I20P (yellow) and I50P (blue) for Hurricane Sandy initialized at 0000 UTC 26 Oct 2012. The asterisks

above panels (a),(b),(e), and (f) corresponding to the aforementioned ensembles indicate the lead times when the

ensemble spread is statistically different from the MCOR ensemble spread at the 95% significance level for

MPHY in (a) and (b) and SKEB, SPPT, I20P, and I50P in (e) and (f).
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domain encompasses each respective TC and its environ-

ment for the duration of the 5-day simulations, allowing

for consistent inter- and intra-ensemble DTE calculations.

The intra-ensemble domain-integrated DTE of the

single-core single-physics ensembles for Sandy (Figs. 9a,b)

and Edouard (Figs. 9c,d) reveals error growth characteris-

tics similar to those of the scalar track and intensity metrics

in Fig. 8. Initially, HWRF, APS4, and APS5 have a no-

ticeable reduction in DTE for both Sandy and Edouard,

remaining the low for the first 72h for Sandy and during the

entire forecast period for Edouard. These three ensembles

use similar convective parameterization schemes in the two

coarse-resolution domains (D01 and D02), but without

cumulus parameterization in the inner-most domain (D03).

Analyses show that the convective parameterization may

be more easily triggered by moist instabilities in the 9-km

D02 than the ensembles without cumulus parameterization

in this intermediate-resolution domain. The convective

parameterization in D02 can stabilize the atmosphere,

which in turn likely reduces the differences among

FIG. 7. As in Fig. 6, but for Hurricane Edouard (2014) initialized at 1200 UTC 11 Sep 2014 with (e),(f) experiments

HWR1 (yellow) and HWR2 (pink).
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ensemble members. Using a single-core ensemble, the

SKEB and SPPT sensitivity experiments increase the in-

traensembleDTEdue to the use of spatially and temporally

correlated noise that differ from member to member,

substantially increasing the differences among ensemble

members.

Integrating the DTE over the ensemble n and vertical k

dimensions and taking the root mean generates a two-

dimensional spatial distribution ofRMDTE,which is useful

for spatially examining the evolution of the DTE. Figures

10a–d (Sandy) and later in Figs. 12a–d (Edouard) show the

spatial evolution of the intramodel RMDTE due to IC

perturbations of the ensemble surrounding the TC vortex.

The intermodel differences in Figs. 10e–h (and Figs. 12e–h)

indicate there is error growth associatedwith the large-scale

environment besides the inner-core uncertainties.

Coherent error structures are evident for the inter-

model RMDTE for Sandy (Figs. 10e–h) by 12h, in-

cluding the midlatitude trough over the central United

States, the TC itself northeast of the Bahamas, and a

warm front and upper-level ridge building to the

northeast of the TC vortex. The intramodel RMDTE

(Figs. 10a–d) at 12 h indicates systematic differences

associated with the TC and the surrounding environ-

ment, but they are limited to the spatial extent of the

initial perturbations. By 36h (Figs. 11a–d), the intra-

model initial condition errors associated with the TC

have also induced environmental differences east of the

midlatitude trough over the U.S. eastern seaboard and

the warm front and ridge to the west. A substantial

difference in the midlatitude trough for HWRF over the

eastern seaboard can be seen in Figs. 11e,g when com-

pared to APSU and COTC. The same intra- and inter-

model relationships seen in Sandy can be found with

Edouard. Large-scale environmental error growth with

coherent error structures in the Caribbean Sea associ-

ated with a tropical wave, the ITCZ off the coast of NE

South America, and a tropical wave to the south of the

CapeVerde Islands are evident by 12h (Figs. 12e–h) and

become more pronounced by 36h (Figs. 13e–h). The

spatial RMDTE analysis indicates model physical pa-

rameterizations can substantially impact the evolution

of the initial condition uncertainties by as little as 12 h,

despite using identical initial large-scale TC environ-

ments. Comparing APSU to APS5 provides further ev-

idence that modifying the physical parameterizations

FIG. 8. Pairwise RMSDs of (a),(c) track (km) and (b),(d) maximum 10-m wind speed (m s21) at 6-hourly lead

times between HWRF and COTC (red), HWRF and APSU (cyan), COTC and APSU (magenta), and APS1 and

APSU (light gray) through APS5 and APSU (navy). (top) Hurricane Sandy initialized at 0000 UTC 26 Oct 2012

and (bottom) Hurricane Edouard at 1200 UTC 11 Sep 2014.
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can alter the evolution of the ensemble similarly to

changing the model core.

g. Ensemble composite and correlation analysis for
Hurricane Edouard (2014)

A lingering question is why the HWRF ensemble initi-

ated with the same initial conditions as the APSU and

COTC ensembles performs so differently for both track

(Fig. 4b) and intensity (Fig. 5b) for Edouard. FromFig. 5a,

it is clear that the HWRF ensemble struggles to develop

Edouard, with most members strengthening only margin-

ally after 48h while both theAPSU and COTC ensembles

begin a period of continual strengthening.

To investigate this issue, ensemble composites are

constructed of relevant dynamic and thermodynamic

fields important for TC development and maintenance.

Relative humidity (e.g., Gray et al. 1975; Gray 1977)

and environmental wind shear (e.g., Simpson and Riehl

1958; Gray 1968; Zhang and Tao 2013; Munsell et al.

2017) have been shown in past studies to impact TC

genesis andmaintenance. Since all members in both the

APSU and COTC ensembles develop and strengthen

over the 5-day forecast period (Fig. 5a), the 10 worst-

performing HWRF ensemble members (hereafter

HWRF-poor, in terms of maximum 10-m wind speed at

96 h) are selected for TC-centered composites from

D01. The same 10 subset ensemble members that are

used to define the HWRF-poor composite are selected

from the APSU and COTC ensembles for direct com-

parison. Examining these three subset ensemble com-

posites of simulated maximum radar reflectivity,9 mean

sea level pressure (MSLP), and tilt (magenta arrow)

and shear (red arrow) vectors10 beginning at 24 h

(Figs. 14a,d,g), it is clear that the HWRF subset

struggles to generate strong convection down shear of

the TC center. By 72h (Figs. 14c,f,i), convection in

HWRF-poor remains weak. The low- and midlevel cir-

culation centers are misaligned, a sign of a moderately

sheared system (Corbosiero and Molinari 2002; Rogers

et al. 2003). The tilt magnitude continually increase for

HWRF-poor throughout the simulation, while the

APSU and COTC subset composites become steadily

aligned (Zhang and Tao 2013; Tao and Zhang 2014)

prior to intensification. However, it remains unclear

whether and how the difference in the wind shear leads

to the large divergence between the APSU–COTC en-

sembles and the HWRF ensemble. The presence of

moderate wind shear can potentially lead to reduced TC

predictability (e.g., Zhang and Tao 2013), while the

difference in shear could lead to differences in the de-

velopment of the stationary rainband to the northeast

of the TC center.

This rainband is associated with a horizontal wind

shear region between the subtropical high pressure that

stretched across the northern Atlantic and the south-

easterly winds induced by the large-scale TC circulation

pattern. A difference between the HWRF-poor com-

posite (Fig. 14h) and the composites of the APSU

(Fig. 14b) and COTC (Fig. 14e) ensembles is clearly ev-

ident by 48h. D02 of HWRF is smaller than those of

APSU and COTC (Fig. 1), as such, the stationary rain-

band lies outside of the high-resolution nest. Therefore,

the rainband is simulated with a lower-resolution grid

that uses convective parameterization. It is hypothesized

FIG. 9. Domain-integrated DTE (m2 s22) for (top) Hurricane

Sandy initialized at 0000UTC 26 Sep 2012 and (bottom)Hurricane

Edouard initialized at 1200 UTC 11 Sep 2014 for (a),(c) APSU

(green), HWRF (cyan), and COTC (magenta), and (b),(d) APS1–5

(gray to navy), SKEB (maroon), and SPPT (purple).

9 To generate comparable simulated radar reflectivities between

models, only the cloudwater and rainwatermixing ratios were used

because of differences in the microphysics schemes. This will im-

pact the simulated radar reflectivity intensity, but the relative dif-

ference between models is the focus.
10 The TC-centered mean environmental wind shear is calcu-

lated within a 38 ring from 28 to 58 from the TC center, and the tilt

vector is calculated as the displacement between the 500- and

850-hPa maximum potential vorticity centers.
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that the convective parameterization is a factor in mod-

ulating the convection associated with the stationary

rainband in the HWRF ensemble.

It has been shown in idealized and case studies that

asymmetric convection of forming TC circulation pat-

terns can be detrimental to the mean symmetric TC

circulation and thus weaken the TC vortex (e.g.,

Montgomery and Kallenbach 1997; Nolan and Grasso

2003; Nolan et al. 2007). For the HWRF and APS5

experiments, it is hypothesized that the convection and

latent heating associated with the enhanced convection

along the stationary rainband to the northeast of the TC

center evolve differently with the use of cumulus pa-

rameterization and the GFS PBL in HWRF and APS5

over the first 48 h. Such differences may alter the avail-

able energy to the symmetric TC circulation and keep

the TC circulation highly tilted. This is a potential area

for future study.

FIG. 10. Vertically integrated RMDTE (m s21) for Hurricane Sandy (2012) at 12-h lead time for the simulation initialized at 0000 UTC 26

Oct 2012. Shown are theRMDTEof the ensemble spread for (a)APSU, (b)HWRF, (c)COTC, and (d)APS5; theRMDTEbetweenmulticore

ensembles (e) APSU and HWRF, (f) APSU and COTC, and (g) HWRF and COTC; and (h) the RMDTE between APS5 and APSU. Panels

(a)–(d) include the ensemble mean 500-hPa geopotential height contoured every 50m. All panels show the static 508 3 508 common domain at

0.258 3 0.258 horizontal resolution for which each model core’s 27-km D01 is interpolated to calculate all DTE analyses.
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To test the impact of convection parameterization

surrounding the TC circulation in HWRF, the HWRF

D02 is enlarged to match APSU–COTC and convective

parameterization is either disabled (HWR1; Fig. 14k) or

enabled (HWR2; Fig. 14n). HWR1 shows an increase in

convection compared with HWR2. The track (Fig. 4d)

and intensity (Fig. 5d) of HWR1 are improved com-

pared with HWRF and HWR2. The use of convective

parameterization in the local TC environment appears

to have a considerable impact on the TC evolution that

subsequently impacts both the track and intensity. The

inherent uncertainties in representing moist convection

(as well as in all other physical parameterizations) will

need to be included in the design of any future ensemble

prediction systems.

4. Summary and conclusions

This study has examined the mean and spread of en-

sembles using multiple TC-configured regional-scale

convection-permittingmodels, including COAMPS-TC,

HWRF, and WRF-ARW. Each model’s dynamic core

and physical parameterization configurations were set

using their 2014 ‘‘pseudo operational’’ HFIP configu-

rations. The ensembles of each model were initialized

with the same set of initial condition uncertainties

FIG. 11. As in Fig. 10, but for 36-h lead time initialized at 0000 UTC 26 Oct 2012.
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derived from a WRF-ARW-based real-time cycling

ensemble Kalman filter analysis perturbations that were

blended with the Global Data Assimilation System

analysis. Comparisons were made among ensembles

with different model dynamical cores (multicore), as

well as among the WRF-ARW ensembles using the

same dynamical core (single core), but withmultiphysics

settings, stochastic physics, and inflated initial condition

perturbations for two selected events: Hurricane Sandy

(2012) and Hurricane Edouard (2014).

Comparing the track ensemble mean and spread

showed that each of the TC-configured regional en-

sembles was capable of producing a similar ensemble

mean track and spread for shorter lead times (,36 h),

but the ensemble mean error increased for each en-

semble at longer lead times (.48 h). For longer lead

times, the ensemble spread for both track and in-

tensity from the multicore ensemble was larger than

any single-core single-physics ensemble. For the WRF-

ARW single-core ensembles with systematically

varying physical parameterization experiments, the

track and intensity ensemble mean could be systemati-

cally altered bymodifying the physical parameterization

configurations.

For the two cases studied, a single-core multiphysics

ensemble randomly sampled from the WRF-ARW

FIG. 12. As in Fig. 10, but for Hurricane Edouard (2014) initialized at 1200 UTC 11 Sep 2014.
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single-core single-physics ensembles could generally

resemble the performance of the multicore ensemble,

except when the single-core multiphysics ensemble was

deficient in the model physical parameterizations. This

occurred for the Edouard case study and resulted in a

reduced track spread. The single-core multiphysics

ensemble benefited from a diversity of TC-tuned

physical parameterizations to maximize the number

of independent forecast solutions.

The SKEBS and SPPT stochastic physics algorithms

in WRF-ARW were independently used to examine

current methods of accounting for model uncertainties.

Both increased the ensemble track and intensity spread

despite using a single-core single-physics ensemble.

The SPPT algorithm had a more pronounced impact on

both the ensemble mean and spread. Future work is

needed to further tune the empirical parameters within

the SKEBS and SPPT algorithms that could potentially

lead to reduced ensemble mean error while maintain-

ing consistency with ensemble spread.

A set of inflated initial condition perturbation ex-

periments were performed with the WRF-ARW en-

semble to account for initial condition uncertainties.

These inflated initial perturbations increased both the

track and intensity ensemble spread, with the magni-

tude of this increase being case specific. The larger

FIG. 13. As in Fig. 10, but for Hurricane Edouard (2014) at 36-h lead time initialized at 1200 UTC 11 Sep 2014.

APRIL 2017 MELHAUSER ET AL . 683



FIG. 14. HWRF-poor ensemble members D01 composite simulated maximum radar reflectivity (cloud water and

rainwater only) andMSLP for (a)–(c) APSU, (d)–(f) COTC, (g)–(i) HWRF, (j)–(l) HWR1, and (m)–(o) HWRF2 at

lead times of (left) 24 h, (center) 48 h, and (right) 72 h initialized at 1200 UTC 11 Sep 2014. The deep-layer (200–

850hPa) shear vector (red arrow) and (850–500hPa) tilt vector (magenta arrow) are overlaid in eachpanel.Reference

shear vector (5m s21; red) and tilt vector (200km; magenta) are shown in the bottom-left corner of each panel.

684 WEATHER AND FORECAST ING VOLUME 32



increase in the initial condition perturbation increased

the ensemble spread similar to the single-core multi-

physics and multicore ensembles.

For the two case studies presented, an ensemble could

be constructed using a single core in combination with

1) varying physical parameterizations, 2) stochastic phys-

ics algorithms, or 3) inflated initial perturbations, to pro-

duce track and intensity forecast uncertainties similar to

those produced by a multicore ensemble. The results

suggest that model physical parameterizations (other

than differences in the dynamic cores) for these two case

studies may play an important role in evolving the case-

specific TC track and intensity uncertainties. For

Edouard, it is hypothesized that an increased number of

TC-configured physical parameterizations used in the

single-core multiphysics ensemble in WRF-ARW may

have provided a larger sample of possible solutions and a

better representation of the track forecast uncertainties.

Examining the differences between APSU–COTC and

HWRF track and intensity spread for Edouard provide

insight into how model resolution and domain size may

alter the evolution of TC forecast uncertainties.

The current study only uses two hurricane events to

exemplify how the choice of the model dynamics core,

model physical parameterizations, stochastic physics

algorithms, and initial condition uncertainties impact

the practical limits of predictability. Further study is

needed using multiple seasons of ensemble TC forecasts

to identify the impact on ensemble performance.
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