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ABSTRACT

The feasibility of using an ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimi-
lation has been demonstrated in the authors’ recent studies via observing system simulation experiments
(OSSEs) both under a perfect-model assumption and in the presence of significant model error. The current
study extends the EnKF to assimilate real-data observations for a warm-season mesoscale convective vortex
(MCV) event on 10-12 June 2003. Direct comparison between the EnKF and a three-dimensional varia-
tional data assimilation (3DVAR) system, both implemented in the Weather Research and Forecasting
model (WRF), is carried out. It is found that the EnKF consistently performs better than the 3DVAR
method by assimilating either individual or multiple data sources (i.e., sounding, surface, and wind profiler)
for this MCV event. Background error covariance plays an important role in the performance of both the
EnKF and the 3DVAR system. Proper covariance inflation and the use of different combinations of
physical parameterization schemes in different ensemble members (the so-called multischeme ensemble)
can significantly improve the EnKF performance. The 3DV AR system can benefit substantially from using
short-term ensembles to improve the prior estimate (with the ensemble mean). Noticeable improvement is

also achieved by including some flow dependence in the background error covariance of 3DVAR.

1. Introduction

Since the first application of an ensemble Kalman
filter (EnKF; Evensen 1994) in the atmospheric sci-
ences field (Houtekamer and Mitchell 1998), the EnKF
has been widely examined with different models at dif-
ferent scales and to different realistic extents (Houteka-
mer and Mitchell 1998; Hamill and Snyder 2000;
Anderson 2001; Whitaker and Hamill 2002; Mitchell et
al. 2002; Snyder and Zhang 2003; Zhang and Anderson
2003; Zhang et al. 2004, 2006; Aksoy et al. 2005,
2006a,b; Houtekamer et al. 2005; Tong and Xue 2005;
Dirren et al. 2007; Meng and Zhang 2007; Whitaker et
al. 2008). See Evensen (2003), Lorenc (2003), and
Hamill (2006) for a recent review. Studies with simu-
lated observations demonstrate its success at decreasing
forecast error and its better performance relative to
variational data assimilation methods such as three-
dimensional variational data assimilation (3DVAR) in
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a large-scale model (Hamill and Whitaker 2005) and
four-dimensional variational data assimilation (4DVAR)
in later cycles in a cloud model especially for model
variables not functionally related to the observations
(Caya et al. 2005).

One of the difficulties in real-world applications of
ensemble-based data assimilation techniques is the
proper representation of model error (Zhang and Sny-
der 2007). Recently, progress has been made in ac-
counting for model error by using additive or multipli-
cative covariance inflation (Hamill and Whitaker 2005;
Houtekamer et al. 2005; Barker 2005). For example,
encouraging results in real-data applications have been
obtained in an ocean general circulation model (Kep-
penne and Rienecker 2002), as well as global (Whitaker
et al. 2004, 2008; Houtekamer et al. 2005) and limited-
area models (Dowell et al. 2004; Barker 2005; Fujita et
al. 2005). The performance of the EnKF implemented
in global models with real data has been shown to be
better than (Whitaker et al. 2004, 2008) or at least com-
parable to that of the 3DVAR method (Houtekamer et
al. 2005). However, direct comparison between an
EnKF and 3DV AR in limited-area models has not been
seen in the literature, which will be a focus of this study.
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In Zhang et al. (2006, Part I of this series), the per-
formance of an EnKF implemented in the fifth-
generation Pennsylvania State University—National
Center for Atmospheric Research Mesoscale Model
(MMS5) was examined with the perfect-model assump-
tion by assimilating synthetic sounding and surface ob-
servations with typical temporal and spatial resolutions
(Part I). It was found that the EnKF with 40 members
works very effectively in keeping the analysis close to
the truth simulation. Most error reduction comes from
the large scale, which is consistent with Daley and Me-
nard (1993), though different mechanisms are involved
in their study. Furthermore, the EnKF performs differ-
ently for different variables; it is least effective for ver-
tical motion and moisture because of their relatively
strong smaller-scale components, but it is the most ef-
fective in reducing the error in pressure (and also very
effective, but to a lesser degree, for horizontal winds
and temperature) because of its dominant larger-scale
components (Part I).

Subsequently in Meng and Zhang (2007, Part II in
this series), the performance of the EnKF was investi-
gated in the presence of model error because of imper-
fect subgrid physical parameterization schemes. The re-
sult shows that the EnKF still performs reasonably well,
though its performance can sometimes be significantly
degraded by the presence of model error. It was found
that using different combinations of different physical
parameterization schemes in different ensemble mem-
bers can significantly improve filter performance as a
result of the better background error covariance and
mean estimation. Different performance levels of this
EnKeF system were also observed for different flow re-
gimes (Part II).

As a natural extension of these two observation
simulation system experiment (OSSE) studies under
both perfect and imperfect model assumptions, the cur-
rent study implements the same EnKF in the Weather
Research and Forecasting Model (WRF) for real-world
data assimilation for the same mesoscale convective
vortex (MCV) event. Its performance is directly com-
pared with the three-dimensional variational data
assimilation system of the WRF (WRF-3DVAR),
complementary to similar comparisons performed with
global models (Houtekamer et al. 2005; Whitaker et al.
2008). In the next section, a brief introduction is given
concerning the methodology, including the model, the
EnKF, and the 3DVAR method. The synoptic over-
view of the MCV event and the observations to be
assimilated are described in section 3. Section 4 com-
pares the performance of the EnKF and the 3DVAR
method. Sensitivities of both methods to the back-
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ground error covariance are examined in section 5. A
brief summary and discussion are given in section 6.

2. Methodology

a. The mesoscale model

The Advanced Research WRF (ARW) is used in this
study. WREF is a fully compressible, nonhydrostatic me-
soscale model (Skamarock et al. 2005). The vertical co-
ordinate follows the terrain using hydrostatic pressure,
and the model uses an Arakawa C grid. Prognostic vari-
ables are column mass of dry air (u,), velocity (u, v, and
w), potential temperature (6), geopotential (¢), and
mixing ratios for water vapor (q,), cloud (g,), rain (g,),
ice (q,), snow (q,), and grauple (q,).

In this work, two domains with one-way nesting are
used. The coarse domain covers the contiguous United
States with 64 X 45 grid points and a grid spacing of 90
km, and the inner domain covers the central United
States with 76 X 61 grid points and a grid spacing of 30
km (Fig. 1a). Both model domains have 27 vertical lay-
ers, and the model top is set at 100 hPa. Unless other-
wise specified, the physical parameterization schemes
include the Grell-Devenyi cumulus scheme (Grell and
Devenyi 2002), the WRF Single Moment (WSM) six-
class microphysics with graupel (Hong et al. 2004), and
the Yonsei State University (YSU) scheme (Noh et al.
2003) for planetary boundary layer (PBL) processes.
National Centers for Environmental Prediction
(NCEP) global final (FNL) analyses are used to create
initial and boundary conditions. Data assimilation and
verification are only performed in the inner domain.

b. WRF-3DVAR

The WRF-3DVAR method used here was developed
primarily at NCAR, and it is now operational at the Air
Force Weather Agency (Barker et al. 2004). Its con-
figuration is based on an incremental formulation, pro-
ducing a multivariate analysis in the model space. Its
incremental cost function is minimized in a precondi-
tioned control variable space where the errors of dif-
ferent control variables are largely uncorrelated.

WRF-3DVAR has several background error statistic
(BES) options for control variables (“cv”). The “cv3”
option formulates physical-space control variables,
namely streamfunction, unbalanced velocity potential,
unbalanced surface pressure, unbalanced temperature,
and “pseudo” relative humidity. The “cv5” option for-
mulates eigenvector-space control variables, namely
streamfuction, velocity potential, unbalanced pressure,
and relative humidity (Xiao and Sun 2007).
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FiG. 1. (a) Map of the model domain and (b) distribution of the
assimilated observations in domain 2.

After minimization in control space, the control vec-
tor is then projected to the model grid via a recursive
filter in the horizontal direction and EOF transforma-
tion in the vertical direction. Then, physical variable
transformation is performed using a balance equation.
In detail, wind increments are calculated from the
streamfunction and velocity potential. Balanced mass
increments are obtained through linearized geostrophic
and cyclostrophic mass—wind balance equations
(Barker et al. 2004).

As in any other data assimilation technique, the
structure of the background error covariance plays a
very important role in 3DVAR. The WRF-3DVAR
background error covariance may be estimated via the
so-called National Meteorological Center model
[NMC, now operating as NCEP; Parrish and Derber
(1992)], which uses the statistics of the differences be-
tween at least 1 month of 24- and 12-h forecasts valid at
the same time. Alternatively, deviations of individual
members from the mean of a short-term ensemble can
be used, which may improve the representation of
smaller-scale features (Lee and Barker 2005). Sensitiv-
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ity of the performance of 3DVAR to different repre-
sentations of background error statistics will be exam-
ined in section 5.

¢. The EnKF

The EnKF is the same as that in Parts I and II except
for being implemented in the WRF model, which uses
the covariance relaxation of Zhang et al. (2004) to in-
flate the background error covariance. Unlike the stan-
dard inflation method (Anderson 2001), in which all
points in the prior field are inflated, this relaxation
method only inflates the covariance at updated points
via a weighted average between the prior perturbation
(denoted by superscript f) and the posterior perturba-
tion (denoted by superscript a) as follows:

(xKe)' = (1 = Q)" + a(x'). (1)
The weighting coefficient « is set to 0.5 in the OSSE
studies in Parts I and II. Considering that prior error in
real-data application may be larger because of the un-
avoidable imperfectness of the forecast model, a value
of 0.7 is used here unless otherwise specified. The Gas-
pari and Cohn (1999) fifth-order correlation function
with a radius of influence of 30 (10) grid points [i.e., 900
km (300 km)] for soundings and profilers (surface ob-
servations) in horizontal directions and 15 sigma levels
in vertical directions is used for covariance localization.
Although the optimum ensemble size to estimate the
forecast uncertainty is still under active research, 40
members are used herein. This is both affordable and
reasonable based on previous studies (e.g., Houteka-
mer and Mitchell 2001; Anderson 2001; Snyder and
Zhang 2003; Zhang 2005; Part I; Part II).

d. Ensemble initial and boundary perturbations

As in Part I, the initial ensemble is generated with
the WRF-3DVAR (Barker et al. 2004) using the BES
of option cv3. To create a largely balanced perturba-
tion, we first generate a set of random control vectors
with a normal distribution (zero mean and unit stan-
dard deviation). Then, the control increment vector is
transformed back to model space via an EOF trans-
form, a recursive filter, and physical transformation via
balance equation. The perturbed variables include the
horizontal wind components, potential temperature,
and mixing ratio for water vapor whose error statistics
are defined by the climatological background error co-
variance. Other prognostic variables such as vertical
velocity (w) and mixing ratios for cloud water (g,), rain-
water (g,), snow (q,), and graupel (g,) are not per-
turbed. The perturbation standard deviations thus gen-
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erated are approximately 2 ms~! for the horizontal
wind components (u and v), 1 K for the potential tem-
perature (7'), 1 hPa for the pressure perturbation (p'),
and 0.5 g kg ™! for the water vapor mixing ratio (¢). The
3DVAR perturbations are added to the GFS FNL
analysis to form an initial ensemble, which is then in-
tegrated for 12 h to develop an approximately realistic,
flow-dependent background error covariance structure
before the first observation is assimilated. Similar
methods, using 3DVAR to generate the initial en-
semble for the EnKF, are also employed in Houteka-
mer et al. (2005) and Barker (2005).

The simplest way to perturb lateral boundary condi-
tions for a limited-area model is to use a global en-
semble forecast with the correct size and resolution
(which is usually unavailable; Chessa et al. 2004). Torn
et al. (2006) examined several alternative boundary
perturbation methods and concluded that the error
originating from using different methods is limited to
near the edges of the domain. In this paper, the GFS
FNL analyses at different times used to create bound-
ary conditions are perturbed in the same manner as
with the initial ensemble.

3. Overview of the MCYV event and observations
to be assimilated

a. The MCV event in BAMEX

The case of interest is an MCV event that occurred
during an intense observation period (IOP8) of the
Bow Echo and Mesoscale Convective Vortex Experi-
ment (BAMEX) conducted from 18 May to 7 July 2003
over the central United States (Davis et al. 2004). This
event exhibited typical environmental features com-
mon to long-lived MCVs such as weak shear and mod-
erate environmental instability (Trier et al. 2006; Haw-
blitzel et al. 2007; Davis and Trier 2007; Trier and Davis
2007). At 0000 UTC 10 June 2003, a disturbance em-
bedded in the subtropical jet triggered convections over
eastern New Mexico and western Texas. An MCV de-
veloped from the remnants of this convection over cen-
tral Okalahoma at 0600 UTC 11 June 2003 and matured
by 1800 UTC 11 June (with a bow echo occurring at
western Tennessee) as it traveled northeastward to-
ward Missouri and Arkansas (Hawblitzel et al. 2007,
their Fig. 2). Its circulation was about 400 km wide and
possessed a well-defined PV maximum around 600 hPa
with a cold anomaly below the circulation and a warm
anomaly above it. This MCV seemed to help initiate
widespread convection on its downshear side at 1600
UTC and on the north side of the circulation at 2200
UTC. Most convection died by 0000 UTC 12 June, and
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the MCV then transitioned into an extratropical baro-
clinic system (Hawblitzel et al. 2007).

b. Observations to be assimilated

The observations to be assimilated in this study in-
clude sounding, surface, and wind profiler observations
located in domain 2 (Fig. 1b). Wind profilers (denoted
by filled squares) are distributed mainly in central
United States to fill the gaps between radiosondes.
They have previously proven to be effective in improv-
ing short-range (3-12 h) forecasts (Benjamin et al.
2004). Data thinning is performed here on the profiler
observations so that the vertical resolution is similar to
that of typical soundings.

Here, we use a quality control method similar to a
procedure in Barker (2005) that guarantees that
3DVAR and the EnKF assimilate exactly the same ob-
servations. First, the FNL analysis fields are interpo-
lated to the model grid at 6-h intervals. Then, the model
is integrated for 6 h starting from the 6-hourly initial
condition. An hourly database is then formed by com-
bining the interpolated 6-hourly FNL analyses at 0000,
0600, 1200, and 1800 UTC with hourly WRF forecasts
in between including 0100-0500, 0700-1100, and 1300-
1700 UTC for each day of interest. This hourly database
is then used as the first guess for a prerun of WRF-
3DVAR to assimilate observations generated by the
observation preprocessor of WRF-3DVAR. The data
processed at hourly intervals that have been ingested by
this prerun will then be assimilated by the following
3DVAR and EnKF experiments. The output file con-
taining the ingested observations transforms the origi-
nal wind speed, wind direction, and relative humidity
into horizontal wind components (z and v) and the mix-
ing ratio of the water vapor (gq). Consequently, the as-
similated variables become horizontal wind compo-
nents (u and v), temperature (7"), and the mixing ratio
of the water vapor (q) for soundings; surface pressure
(ps), u, v, T, and q for surface data; and u and v for wind
profiler data. In this way, the observations first go
through a basic quality control process such as range,
domain, persistency, extreme-value, and buddy checks.
Then, in the 3DVAR prerun, an “errormax” quality
control is performed by dropping the observations
whose absolute differences from the first guess are
more than five times larger than the corresponding ob-
servation errors.

The observation errors of the soundings and wind
profilers are given in Table 1. The observation errors of
the surface data are 2 K for temperature, 10% for rela-
tive humidity, and 100 Pa for surface pressure (Barker
et al. 2004).
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TABLE 1. Observation error for sounding and profiler.
Pressure (hPa) 100 150 200 250 300 400 500 700 850 1000
Wind (ms™')
Sounding 2.7 3.0 33 33 33 2.8 2.3 14 1.1 1.1
Profiler 2.8 2.8 3.0 3.1 32 3.0 2.8 22 22 22
Temperature (K) 1 1 1 1 1 1 1 1 1 1
RH (%) 10 10 10 10 10 10 10 10 10 15

4. Comparison between the EnKF and 3DVAR

a. The reference forecasts

With the initial and boundary conditions interpolated
from the FNL analysis, a 36-h reference deterministic
forecast (DF) is conducted starting from 1200 UTC 10
June 2003 without assimilating any observations. In
comparison with the observation (Fig. 2a), the simu-
lated MCV (Fig. 2b) moves much faster, resulting in a
position error of about 400 km at 0000 UTC 12 June.

To assess the benefit of the EnKF from both the data
assimilation algorithm itself and the utilization of the
ensemble forecast for state estimate, a 36-h reference
ensemble forecast is also performed with the same
model configuration for all members as that in the DF
but with the addition of initial and boundary perturba-
tions described in section 2d (hereinafter also referred
to as EF). Relative to the DF, the mean of EF shows

slightly smaller error in the 36-h surface location of the
simulated MCV (Fig. 2c). The magnitude of its simu-
lated reflectivity is lower because of the ensemble av-
eraging.

The error of the reference EF is smaller than that of
DF in terms of column-averaged root-mean difference
total energy (RM-DTE) and root-mean-square (RMS)
error (RMSE) of g verified against sounding observa-
tions (Figs. 3a—d). The DTE is defined as in Zhang
(2005):

DTE = 0.5(u'u’ + v'v' + kT'T’), 2

where the primes denote the differences between the
observations and the verified fields and k = C,/T,, with
C, = 1004.7 T kg~' K™' and the reference temperature
T, = 290 K. Figure 3 also shows that the largest errors
in both reference forecasts occur around the MCV.
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FIG. 2. (a) Observed radar echoes at 0000 UTC 12 Jun. The MSLP (every 2 hPa), 10-m wind vectors (full barb 5 m s™!), and simulated
reflectivity (shaded) valid at 36 h (0000 UTC 12 Jun) of the reference forecasts (b) DF and (c) EF and the prior forecast of (d)
3DVAR_SND, (e) EnKF_SND, and (f) EnKF_ALL. The X and L, respectively, denote the simulated and observed MCV centers at

the surface.
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FiG. 3. Horizontal distributions of the column-averaged RM-DTE and RMSE of ¢ valid at 36 h for the reference forecast (a),(b)
DF and (c),(d) EF and the prior forecast of (e),(f) EnKF_SND and (g),(h) 3DVAR_SND.

b. Experiments with different types of observations

Three types of observations including sounding, sur-
face, and wind profiler data are assimilated separately
via both the EnKF and 3DVAR in this section. The
experiments are named “EnKF_SND” and “3DVAR_
SND” for sounding assimilation, “EnKF_SFC” and
“3DVAR_SFC” for surface assimilation, and “EnKF_
PFL” and “3DVAR_PFL” for profiler assimilation. As
mentioned before, all results are verified against sound-
ings that have passed our quality control procedure at
nine standard pressure levels, that is, 925, 850, 700, 500,
400, 300, 250, 200, and 150 hPa, unless otherwise speci-
fied.

1) SOUNDING DATA

The results show that the EnKF very efficiently
draws the analysis close to the observations (black dot—
dashed line in Fig. 4) for the 30 sounding sites within
the inner (assimilation and verification) domain where
u, v, T, q, and ps are assimilated every 12 h. At each
data assimilation time, the posterior RMSE (black dot-
dashed line in Fig. 4) is smaller than the prior RMSE
(black solid line in Fig. 4) by up to 50%. However, since
the verification of the analysis (posterior) uses the same
sounding observations as those assimilated, it is more
appropriate to judge the performance of the data as-
similation via the short-term forecast (prior estimate)
initialized with the posterior analysis from the previous
assimilation cycle. The EnKF prior estimate (black
solid line in Fig. 4) at 36 h also tracks the observations
better than both the reference DF (gray dashed line in
Fig. 4) and EF (black dashed line in Fig. 4). Similar to
the results obtained in OSSE studies (Part I; Part II),

larger improvements are observed in variables with
higher power at large scales such as u, v, and 7. After
two cycles at 36 h, the prior RMSEs of u, v, and T are,
respectively, 3.3 m s 1. 40ms !, and 1.8 K. The RMSE
of g grows faster than do other variables during the
subsequent integrations, likely because of its higher
spectral power at smaller scales (Part I).

In comparison with EnKF_SND, much worse perfor-
mance is seen in 3DVAR_SND. Though its prior
RMSEs at 36 h (gray solid line in Fig. 4) are smaller
than those of the reference DF, they are much larger
than those of EnKF_SND and even slightly larger than
the RMSEs of the reference EF for all u, v, T, and q.
The posterior errors (gray dot-dashed line in Fig. 4) of
u and v at 36h are also noticeably larger than those of
EnKF_SND. The errors grow much faster in the
3DVAR 12-h forecasts than in the EnKF. This result is
consistent with the better performance of a global mod-
el-based EnKF relative to 3DVAR by assimilating the
operational observation network of NCEP except for
satellite data (Whitaker et al. 2008).

The better performance of the EnKF relative to
3DVAR can also be seen in the vertical distribution of
domain-averaged prior RMSEs of u, v, T, and g at 36 h
(Fig. 5). The errors of 3DV AR (gray solid line in Fig. 5)
are generally larger than those of the EnKF (black solid
line in Fig. 5) in each layer with local maxima near the
tropopause and the surface. Most of the error reduction
of the EnKF relative to the reference EF comes from
the lower troposphere. Examination of the horizontal
distribution of the column-averaged prior error shows
that the EnKF performs significantly better than does
3DVAR over the MCV area (Figs. 3 e-h).

EnKF_SND also draws the simulated MCV closer to
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F1G. 4. Time evolution of domain-averaged RMSEs of (a) u, (b) v, (¢) T, and (d) g for EnKF_SND (black),
3DVAR_SND (gray), and EnKF_multi (light gray). The solid lines denote the prior RMSEs, and the dot-dashed
lines are the posterior RMSEs. Also plotted are the RMSE:s of the reference forecast DF (gray dashed), EF (black

dashed), and EF_multi (light gray dashed).

the observed location (Fig. 2e) than do either the ref-
erence forecasts or 3DVAR (Figs. 2b—d). The simu-
lated reflectivity is slightly stronger and better orga-
nized (especially to the south of the surface center)
than that in the reference EF and much closer to the
observed location (Fig. 2a). When compared with the
reference DF (Fig. 2b), 3DVAR_SND (Fig. 2d) also
better simulates the position of the MCV and its asso-
ciated reflectivity.

The domain-averaged RM-DTEs of forecasts and
analyses of all experiments at 36 h (Fig. 6) clearly show
that EnKF_SND performs better than 3DVAR_SND.
Also shown is that EnKF_SND performs better than
references EF and DF, while 3DVAR_SND performs
better than reference DF but worse than reference EF.
The RM-DTE of EnKF_SND is 4.38 ms™" while that
of 3DVAR_SND is 5.19 m s~ '. Results from other ex-
periments also shown in Fig. 6 will be discussed in sub-
sequent sections.

To further investigate the capability of these two
methods in depicting the MCV structure, short-term
forecasts started from the 3DVAR analysis and en-
semble analyses at 1200 UTC 11 June are verified
against 20 dropsonde observations obtained during

I0P8 of BAMEX from 1604 to 1905 UTC 11 June at
approximately 8-min intervals. These dropsonde obser-
vations are taken in and around the area of the MCV
and have passed a basic quality control through the
preprocessor of WRF-3DVAR. In particular, compari-
son of the simulated wind vectors from both analyses
with the dropsonde observations at 1730 UTC (ap-
proximately the averaged dropsonde time) shows that
the EnKF forecast captures the MCV circulation better
than does 3DV AR with a closed midlevel vortex in the
observed location (Fig. 7). The domain-averaged
RMSE:s of u, v, T, and g verified against the dropsonde
observations at the nearest half or integer hour model
output times from 1600 to 1900 UTC (Fig. 8) show that
EnKF_SND (black lines) apparently has smaller error
than does 3DVAR_SND (gray lines) in both dynamic
and thermodynamic variables but more so in the wind
fields.

Further improvement in 7 and g can be achieved
through including model physics parameterization un-
certainties in the ensemble forecast to be discussed in
section 5a. Also discussed later is that the better per-
formance of the EnKF when compared with 3DVAR
may come from using both the ensemble mean for prior
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F1G. 5. Vertical distributions of the horizontally averaged prior RMSEs of (a) u, (b) v, (¢) 7, and (d) ¢ for
EnKF_SND (black solid), 3DVAR_SND (gray solid), and EnKF_multi (light gray solid). Also plotted are the
horizontally averaged prior ensemble spreads (STD) of EnKF_SND (black dotted) and EnKF_multi (light gray
dotted) together with the horizontally averaged RMSEs of the reference forecast DF (gray dashed), EF (black
dashed), and EF_multi (light gray dashed).

EnKF_prior ®&EnKF_poste O3DVar_prior B 3DVar_poste
DF EF_single EEF_multi

RM-DTE (m/s)

777 77777777777777777777777777777777777777.

FIG. 6. A summary of domain-averaged RM_DTE prior/forecast and posterior/analysis
errors valid at 36 h for all experiments.
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(b 3DVar W

F1G. 7. Wind vector forecast (gray color) at 700 hPa of (a) EnKF_SND and (b)
3DVAR_SND valid at 1730 UTC 11 Jun 2003 starting from their respective posteriors at 1112
UTC 11 Jun. The dropsonde observation during 1604-1905 UTC 11 Jun are plotted in black.

estimation and a flow-dependent background error co-
variance. Note that the ensemble mean is used for the
EnKF to calculate the RMSESs but a single realization is
used for 3DVAR. The ensemble mean fields do not
likely have the same variability as the 3DVAR single
realization and smooth fields will have a systematic ad-
vantage in the RMSE-based scores. For example, ap-

plication of a standard five-point smoother once to the
12-h forecast of the 3DV AR single-run forecast at 36 h
may reduce the domain-averaged RM-DTE from 5.2 to
5.1 ms™! and further to 4.8 ms™' after applying 10
smoother times. However, the RM-DTE from the
smoothed 3DVAR forecast is still significantly larger
than that of EnKF_SND, 4.4 ms™! 4.2 ms~! for
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EnKF_muti; section 5a). Power spectrum analyses of
the prior-forecast total energy at 0000 UTC 12 June in
Fig. 9 show that the total energy of 3DVAR_SND will
decrease slightly at smaller scales after one application
of a five-point smoother. A much greater reduction of
the total energy at smaller scales can be further
achieved after applying the five-point smoother 10
times, but the reduction of the variability at larger
scales is only marginal compared to that of the en-
semble mean forecast of EnKF_SND (Fig. 9). This re-
sult suggests that the difference in performance be-
tween 3DVAR_SND and EnKF_SND is not solely
because of the averaging/smoothing effects implicit in
the EnKF approach.

2) WIND PROFILER

While the 28 profilers in the inner domain with u and
v observations take observations as frequent as every 6
min (Fig. 1b), profiler data assimilation was only per-
formed every 3 h. Testing showed no benefit (in terms
of analysis error) in assimilating profiler data more of-
ten than every 3 h. The reason for this frequency limit
is not exactly clear but it could be that an even smaller
assimilation window might be too short for the en-
semble to develop additional meaningful error covari-
ance structures while imbalance from previous analysis
cycle may not have sufficient time to be dispersed. As-
similating more frequent observations with similar in-
formation content is more vulnerable to sampling er-
rors given the limited ensemble size.

In comparison with EnKF_SND, EnKF_PFL has a
slightly smaller prior RM-DTE at 36 h (4.25 m s~ ' ver-
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sus 438 ms~! in Fig. 6), likely because the previous

assimilation cycle was only 3 h prior in EnKF_PFL
(whereas it was 12 h prior in EnKF_SND). The poste-
rior error is almost the same as the prior error, but it is
significantly larger than that of EnKF_SND since the
same sounding observations (assimilated in EnKF_
SND) are used to verify the results in all cases. There is
apparently larger improvement in v (Fig. 10b). It is
worth noting that though temperature is not observed,
it is also improved relative to the reference EF below
about 500 hPa through the flow-dependent background
error covariance of the EnKF (light gray solid line in
Fig. 10c).

Experiment 3DVAR_PFL (gray solid line in Fig. 10)
shows a generally larger prior error than EnKF_
PFL (light gray solid line in Fig. 10). It performs worse
than EnKF_PFL at every layer for u, v, and g and at
lower layers for T (Fig. 10). The prior RM-DTE of
3DVAR_PFL at 36 his 1.75 ms ™" larger than that of
EnKF_PFL (Fig. 6).

3) SURFACE DATA

In comparison with the sounding and profiler data
assimilation results, even though there are many more
surface stations in the inner domain, much less im-
provement is seen when only surface data is assimilated
every 6 h in experiments EnKF_SFC and 3DVAR_SFC
(Fig. 11). Only a small error reduction is seen in terms
of the prior RM-DTE in EnKF_SFC relative to the
reference EF (Fig. 6). As expected, error reduction in
EnKF_SFC (versus EF) is mainly in the lower tropo-
sphere (light gray solid line in Fig. 11). Though less
improvement is obtained in this case, EnKF_SFC still
outperforms 3DVAR_SFC (gray solid line in Fig. 11).
The prior RM-DTE of EnKF_SFC at 36 his 1.94 ms™!
less than that of the 3DVAR_SFC. As in the profiler
data assimilation, the posterior error is similar to the
prior error in both EnKF_SFC and 3DVAR_SFC.

4) SOUNDING, PROFILER, AND SURFACE DATA

The results of experiments EnKF_ALL and
3DVAR_ALL, which assimilate all three types of ob-
servations at the aforementioned frequencies, show
that utilization of all data types results in generally bet-
ter performance than assimilating any individual source
of observations (in terms of the prior error at 36 h; see
Figs. 12 and 6). The RM-DTE in EnKF-All at 36 h is
425 ms~!, which is 0.58 ms~! less than that of the
reference EF (Fig. 6). The most significant improve-
ment comes from the middle troposphere (Fig. 12). The
position of the MCV and its associated reflectivity are
also noticeably improved (Fig. 2f). Again, the EnKF
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outperforms 3DVAR for all u, v, T, and ¢q (Fig. 12). The
prior RM-DTE of 3DVAR_ALL at 36 his 474 ms™,
which is 0.49 m s™! larger than that of EnKF_ALL, but
the difference is smaller than that between EnKF_SND
and 3DVAR_SND when less data are assimilated
(Fig. 6).

5. Model error treatments in the EnKF

In real data assimilations, the model error can have
an important impact on the performance of the assimi-
lation technique. In this section, we examined the ben-
efits of using a multischeme ensemble and covariance
inflation for the treatment of forecast model errors. For
simplicity, soundings are only assimilated every 12 h
using EnKF_SND as a benchmark for comparison.

a. Multischeme ensemble

The impact of using a multischeme ensemble is in-
vestigated here to test the OSSE result in Part II that
the EnKF performance can be improved through the
use of different physical parameterization schemes in
different ensemble members to account for model
physics uncertainty. Experiment EnKF_multi uses a
combination of three cumulus schemes [Kain—Fritsch
(Kain and Fritsch 1993), Betts—Miller (Betts and Miller
1986), and Grell-Devenyi (Grell and Devenyi 2002)],

three PBL schemes [the YSU scheme (Noh et al. 2003),
Mellor-Yamada—Janji¢ Eta Model (ETA; Janji¢ 2002),
and the Medium-Range Forecast model (MRF; Hong
and Pan 1996)], and three cloud physics schemes [Lin et
al. (Lin et al. 1983), Thompson et al. (Thompson et al.
2004), and WSM six-class graupel (Hong et al. 2004)],
which are near evenly distributed among the same
number of ensemble members (Table 2). To differen-
tiate the benefits of using the multischeme ensemble for
better background error covariance from better prior
estimates (or ensemble means), another reference fore-
cast, EF_multi, is performed with the same multi-
scheme configuration as that in EnKF_multi but with-
out assimilating any observations.

The result shows that both the prior and posterior
errors at 36 h of v, 7, and g in EnKF_multi are de-
creased more than those in EnKF_SND (Fig. 4). The
error reduction of 0.16 m s~ ! comes from both the prior
estimate using the multischeme ensemble forecast
(light gray dashed line in Fig. 4) and the EnKF with
better background error covariance (light gray solid in
Fig. 4). The largest improvement is observed in 7,
which should be more closely related to the uncertainty
in the physical parameterization schemes. EnKF_multi
apparently has larger ensemble spread for all variables
shown (light gray dotted line in Fig. 5) relative to that
of EnKF_SND (black dotted line in Fig. 5).
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TABLE 2. Model configuration of the experiment with multischeme ensemble EnKF_multi.

No. of members using a cumulus
scheme and the scheme used

No. of members using a microphysics
scheme and the scheme used

No. of members using the PBL
scheme and the scheme used

13 Kain-Fritsch

13 Betts—Miller

14 Grell-Devenyi

4, Lin et al.

4, Thompson et al.

5, WSM six-class graupel
4, Lin et al.

4, Thompson et al.

5, WSM six-class graupel
4, Lin et al.

5, Thompson et al.

5, WSM six-class graupel

1,YSU; 2, ETA; 1, MRF
1, YSU; 2, ETA; 1, MRF
2,YSU; 2, ETA; 1, MRF
1,YSU; 2, ETA; 1, MRF
1, YSU; 2, ETA; 1, MRF
2,YSU; 2, ETA; 1, MRF
1, YSU; 2, ETA; 1, MRF
2,YSU; 2, ETA; 1, MRF
2,YSU; 2, ETA; 1, MRF

Forecasts starting from 1200 UTC 11 June with out-
put at 30-min interval are also verified against drop-
sondes during 1600-1900 UTC (light gray lines in Fig.
8). Result shows that using a multischeme ensemble
also improves the simulated MCV structure with a
much better fit to the independent dropsonde observa-
tions for thermodynamic variables in the MCV area
than that using a single-scheme ensemble.

b. Covariance inflation

Because of sampling and model errors, the EnKF
may underestimate the analysis uncertainty, which
could lead to filter divergence if untreated. Two com-
mon ways to cope with this problem are the multipli-
cative covariance inflation method (Anderson 2001)
and the additive covariance inflation method (Hamill
and Whitaker 2005; Houtekamer et al. 2005). However,
both inflation methods may lead to excessive ensemble
spread in data-sparse regions (Zhang et al. 2004).

As in Zhang et al. (2004) and described in section 2c,
this study uses the covariance relaxation method [Eq.
(1)] to inflate the background error covariance but
avoid excessive spread. Three experiments with « of
0.0, 0.5, and 0.7, referred to as EnKF_mix0, EnKF_
mix0.5, and EnKF_SND, respectively, are performed
to test the EnKF sensitivity to the relaxation coeffi-
cient. Result shows that the relaxation (mixing) be-
tween the prior and posterior perturbations can draw
the subsequent prior estimate closer to the observa-
tions, and a larger relaxation coefficient is necessary for
this real-data application than the value of 0.5 used in
the OSSEs (Part I; Part IT). Overall, EnKF_SND (black
solid line in Fig. 13) results in slightly smaller prior
RMSEs than EnKF_mix0.5 (not shown). They both
outperform EnKF_mix0 with no relaxation (gray solid
line in Fig. 13).

Figure 13 also shows a consistent improvement from
EnKF_mix0 to EnKF_SND and then to EnKF_multi
(solid lines) possibly because of the correspondingly

increasing ensemble spread, as shown by the dotted
lines. This result indicates that proper covariance infla-
tion or relaxation may improve the performance of the
EnKF.

6. Tuning 3DVAR with ensembles

Results demonstrated in sections 4 and 5 show that
the EnKF may benefit from both the use of ensemble
forecasts to estimate the flow-dependent background
error covariance and the use of an ensemble mean to
estimate the prior. This section examines the possible
impacts of adding some flow dependence into the BES
and using ensemble-based state estimation on the per-
formance of 3DVAR. In detail, one is the standard
3DVAR system using a newly generated BES but a
single forecast for the prior estimate; the other is an
ensemble-based 3DV AR, in which a short-term en-
semble forecast is utilized to derive the prior estimate
while the BES is either fixed or estimated with the same
short-term ensemble (and thus has some flow depen-
dency).

a. Impact of flow dependence in background error
covariance

As introduced in section 2b, the WRF-3DVAR de-
fault background error covariance (the cv3 option) is
calculated using a month-long GFS global model fore-
cast via the NMC method. This could potentially be
problematic because of error statistics calculated from a
different model and a different grid size. The sensitivity
of 3DVAR to the B matrix has been examined in Dee
(1995), Fisher (2003), Derber et al. (2003), Hamill et al.
(2003), and Buehner (2005), in which the B matrix is
treated as inhomogeneous and anisotropic. This section
investigates the possible benefits 3DV AR could receive
from an ensemble-based BES, as is the case for the
EnKF.

Using the cv5 option in WRF 3DV AR and the NMC
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FI1G. 13. As in Fig. 10 but for EnKF_mix0 (gray lines), EnKF_SND (black lines), and EnKF_multi
(light gray lines).

method, experiment Var_nmcB generates the BES
from 60 pairs of month-long (May 2003) 24- and 12-h
forecast differences valid at the same time (every 12 h)
with the WRF model configured in the same manner as
with the reference DF. This method is expected to pro-
vide more reasonable BESs for scale, balance, and cor-
relation structures than the one interpolated from the
defaulted BES that was derived from a coarse-
resolution global model (Lee and Barker 2005). How-
ever, in this case, the results of 3DVAR_SND and Var_
nmcB are nearly indistinguishable in terms of the prior
error at 36 h (Figs. 6 and 14).

Another way to generate the BES is to use a short-
term ensemble forecast (Lorenc 2003; Lee and Barker
2005). Experiment Var_ensB utilizes a 40-member 12-h
ensemble forecast valid at 0000 UTC 11 June to gen-
erate a BES that is fixed for subsequent assimilation
cycles. In this case, the prior RM-DTE at 36 h is slightly
smaller than that of 3DVAR_SND, which is consistent
with other studies (e.g., Lee and Barker 2005). Vertical
distributions of the prior RMSE show that the improve-
ment comes mainly from u and v (solid light gray line in
Fig. 14). The simulated reflectivity (Fig. 15a) is similar
to that of 3DVAR_SND (Fig. 2d).

Experiment Var_evoB utilizes a 40-member 12-h en-
semble to generate a different BES at every assimila-
tion time (instead of being fixed as in Var_ensB). This

BES has some flow dependency but is still isotropic and
mostly homogeneous. Its difference from the fixed BES
lies in the time-variant correlation length scale and vari-
ance. Relative to 3DVAR_ensB, including some flow
dependency in the BES results in only slight further
improvement in terms of the prior error at 36 h (Figs. 6
and 14). Again, the surface structure of the MCV is
similar to that in the previous standard 3DV AR experi-
ments (Fig. 15b).

b. Impact of ensemble-based state estimate

As indicated in section 4, using an ensemble mean for
state estimation may contribute a large part of the im-
provement of the EnKF over 3DVAR. In this section,
two ensemble-based 3DVAR experiments, namely
EnVar_ensB and EnVar_evoB (Table 3), are per-
formed in this section to further examine the impacts of
flow-dependent BES and of using an ensemble forecast
mean to perform prior estimate. EnVar_ensB uses the
mean of an ensemble initiated by 3DVAR to perform
the state estimation. Each member goes through the
forecast and analysis cycling independently with the
same fixed BES as that in Var_ensB. The prior and
posterior estimates at each assimilation time are simply
the ensemble mean of the forecast and analysis en-
sembles. In EnVar_evoB, BES is generated from the
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3DVAR_SND (gray dot-dashed).

forecast ensemble at each assimilation time and it is
thus time variant with some flow dependency involved.

The results show that the prior error of EnVar_ensB
at 36 h (Figs. 6 and 16) is comparable to that of EnKF_
SND, and it is significantly smaller than that of the
standard 3DV AR experiments. The surface location of
the MCV and its associated reflectivity pattern also ap-
parently improve (Fig. 15¢), becoming similar to those
in EnKF_SND (Fig. 2e). This result suggests that the
use of an ensemble mean can significantly improve the
prior estimate and thus subsequent analyses. The im-
provement of EnVar_ensB over Var_ensB (0.5 ms™")
is apparently larger than that of Var_evoB over Var_
ensB (0.08 ms™!), which indicates that using an en-
semble mean to estimate the prior forecast and/or the
posterior analysis is an important benefit of the EnKF.

In EnVar_evoB there is only slight further improve-
ment in v (blue solid in Fig. 16) relative to EnVar_ensB.
The overall prior RM-DTEs at 36 h in these two en-
semble-based 3DVAR experiments are very similar.
The intensity of the simulated reflectivity associated
with the MCV is slightly improved (Fig. 15d). Similar to
the comparison of Var_ensB and Var_evoB, the utili-
zation of a time-variant BES in EnVar_evoB does not
result in significant improvement over EnVar_ensB. Fi-

nally, the prior RM-DTE at 36 h of EnVar_evoB (4.47
ms~ ') is smaller than that of Var_evoB (4.9 ms™!)
(Fig. 6). This further confirms the benefits of using an
ensemble to perform state estimation in ensemble-
based data assimilation methods.

7. Summary and discussions

Through assimilating conventional observations in-
cluding sounding, wind profiler, and surface data, the
performance of a WRF-based EnKF is examined in
comparison to WRF-3DVAR for the MCV event of
10-12 June 2003. Results show that the EnKF generally
outperforms 3DVAR for this particular MCV case (in
terms of the forecast RMSE initialized with the poste-
rior analysis from the previous assimilation cycle). Part
of the performance difference between these two meth-
ods is due to the use of an ensemble mean (which has a
smoothing effect) in the EnKF instead of using a single
unperturbed run in the 3DVAR for the RMSE verifi-
cation.

The impact of different data types on the perfor-
mance of both data assimilation methods is different.
The prior RM-DTEs at 36 h are, respectively, 4.38, 4.25,
and 4.71 ms~! for the sounding, profiler, and surface
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data assimilation experiments. These are smaller than
the RM-DTEs for the reference forecasts (which are
5.96 ms~! for the reference deterministic forecast and
4.83 m s~ ' for the reference ensemble forecast). Similar
to the OSSEs (Part I; Part I1), larger improvements are
seen in u, v, and 7 than in q. In each experiment with a
single observation source, the EnKF shows consistently

better results than does 3DVAR. The prior RM-DTE
at 36 h of the EnKF is about 0.5-1.5 m s~ ' smaller than
that of 3DVAR. The error growth rate of the forecast
initiated from the 3DVAR analysis appears to be sig-
nificantly larger than that from the EnKF analysis, pos-
sibly because of inappropriate error corrections by the
3DVAR at smaller scales where errors usually grow

TaBLE 3. Experiment designs concerning the sensitivity of 3DVAR to different BESs.

Groups Expt BES employed (the cv5 option) Prior and posterior estimate

Standard 3DVAR Var_nmcB Fixed BES via the NMCmethod Standard 3DVAR

Var_ensB Fixed BES via the first 12-h ensemble forecast Standard 3DVAR

(i.e., first 12 h of EF)

Var_evoB Evolving BES via preceding 12-h ensemble forecast Standard 3ADVAR

Ensemble-based EnVar_ensB Fixed BES as in Var_ensB; standard 3DVAR Ensemble mean of the forecast
3DVAR analysis for each member and analysis ensemble
EnVar_evoB Evolving BES via preceding 12-h ensemble forecast; Ensemble mean of the forecast

standard 3DVAR analysis for each member

and analysis ensemble
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faster. Both the EnKF and 3DVAR generally perform
better when sounding, profiler, and surface observa-
tions are assimilated together than when each is assimi-
lated separately. The EnKF again performs better than
3DVAR, though the difference becomes smaller than
assimilating only sounding observations, suggesting
that further reduction of the difference between the
two methods may be expected when more observa-
tions, such as those from remote-sensing satellites, are
assimilated.

Series experiments are implemented to examine the
sensitivity of both the EnKF and 3DVAR to different
background error covariances via sounding data assimi-
lation. Examination of the impact of weighting coeffi-
cients in the covariance relaxation procedure of the
EnKF shows that a value between 0.5 and 0.7 appar-
ently gives better results than the case without relax-
ation. Similar to the OSSE experiments (Part II), using
different combinations of physical parameterization
schemes in different ensemble members can signifi-
cantly improve the EnKF performance, especially for
the thermodynamic variables.

The sensitivity of 3DV AR to various background er-
ror covariance methods is examined. Methods exam-
ined include the default cv3 BES option; option cv5,
which is generated with month-long 24- and 12-h WRF

forecast differences for May 2003; and option cvS5,
which is generated with a 40-member 12-h forecast en-
semble. Result shows that there are no significant per-
formance differences among the different standard
3DVAR experiments. Slight improvement is observed
when the background error statistics are generated at
each data assimilation time with a 12-h forecast en-
semble relative to the experiments with fixed back-
ground error statistics.

To examine the role of state estimation with an en-
semble mean, two ensemble-based 3DVAR experi-
ments with fixed and time-variant background error
statistics are conducted. The two experiments perform
similarly to each other but are apparently better than
the standard 3DVAR experiments. Their performance
levels are comparable to that of the EnKF, likely be-
cause of a better prior estimate via the use of an en-
semble mean. Results also demonstrate that the utili-
zation of an ensemble rather than a deterministic fore-
cast results in a larger improvement than that obtained
when one chooses a time-variant background error co-
variance over a fixed one. This suggests that the EnKF
outperforms 3DVAR through not only its flow-
dependent background error covariance but also its en-
semble-based state estimation.

Last, note that all of the conclusions of the current
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study are based on this particular MCV event, and they
thus have their limitations. Longer-term experiments
for this warm season and a winter season are under way
and will be presented in a subsequent study.
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