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ABSTRACT

In previous works in this series study, an ensemble Kalman filter (EnKF) was demonstrated to be
promising for mesoscale and regional-scale data assimilation in increasingly realistic environments. Parts I
and II examined the performance of the EnKF by assimilating simulated observations under both perfect-
and imperfect-model assumptions. Part III explored the application of the EnKF to a real-data case study
in comparison to a three-dimensional variational data assimilation (3DVAR) method in the Weather
Research and Forecasting (WRF) model. The current study extends the single-case real-data experiments
over a period of 1 month to examine the long-term performance and comparison of both methods at the
regional scales. It is found that the EnKF systematically outperforms 3DVAR for the 1-month period of
interest in which both methods assimilate the same standard rawinsonde observations every 12 h over the
central United States. Consistent with results from the real-data case study of Part III, the EnKF can benefit
from using a multischeme ensemble that partially accounts for model errors in physical parameterizations.
The benefit of using a multischeme ensemble (over a single-scheme ensemble) is more pronounced in the
thermodynamic variables (including temperature and moisture) than in the wind fields. On average, the
EnKF analyses lead to more accurate forecasts than the 3DVAR analyses when they are used to initialize
60 consecutive, deterministic 60-h forecast experiments for the month. Results also show that deterministic
forecasts of up to 60 h initiated from the EnKF analyses consistently outperform the WRF forecasts
initiated from the National Centers for Environmental Prediction final analysis field of the Global Forecast
System.

1. Introduction

The ensemble Kalman filter (EnKF; Evensen 1994),
which estimates the background error covariance with a
short-term ensemble forecast, is drawing increasing at-
tention in the data assimilation community (Evensen
2003; Lorenc 2003; Hamill 2006; Zhang and Snyder
2007). Progress has lately been made toward imple-
menting ensemble-based data assimilation into weather
prediction models with real observations (Dowell et al.
2004; Whitaker et al. 2004, 2008; Barker 2005; Houteka-

mer et al. 2005; Hakim and Torn 2008; Fujita et al.
2007).

Application of the EnKF in real-world data assimi-
lation with large-scale models has made significant
progress. Houtekamer et al. (2005) implemented the
EnKF into a large-scale model that includes a standard
operational set of physical parameterizations by assimi-
lating real observations from a fairly complete obser-
vational network. The 6-h data assimilation cycles were
conducted for about half a month, and model error was
treated by additive random perturbations sampled from
the background error statistics (BES) of a simplified
version of their three-dimensional variational data as-
similation (3DVAR) method. The performance of the
EnKF was found to be comparable to that of the
3DVAR system. Whitaker et al. (2004) and Compo et
al. (2006) demonstrated that the EnKF is well suited to
historical reanalysis problems and outperforms
3DVAR. Whitaker et al. (2008) further implemented
the EnKF in a reduced-resolution version of the Global
Forecast System (GFS) at the National Centers for En-
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vironmental Prediction (NCEP) with all of the real-
time observations used by the NCEP operational data
assimilation system except for satellite radiance. Their
40-day, 6-hourly data assimilation experiments show
that the EnKF works better than the operational
3DVAR system configured in the same way. The 48-h
forecast from the ensemble data assimilation system
was as accurate as the 24-h forecast from the 3DVAR
system.

In previous parts of this study series, a mesoscale,
ensemble-based data assimilation system has been
shown to be promising in increasingly realistic environ-
ments. First, the EnKF was used to simulate observa-
tions both under a perfect-model assumption (Zhang et
al. 2006, hereafter Part I) and in the presence of signif-
icant model error (Meng and Zhang 2007, hereafter
Part II). The EnKF was then used in a mesoscale con-
vective vortex (MCV) case study of real-world data as-
similation (Meng and Zhang 2008, hereinafter Part III).
As a natural extension of the case study involving real-
world data assimilation with the EnKF implemented in
the Weather Research and Forecasting (WRF) Model,
a month-long rawinsonde data assimilation experiment
is performed in this study to compare the behavior of
the EnKF in a more general manner to WRF-3DVAR.
Model error is treated using the “multischeme” en-
semble (see Parts II and III) and the relaxation method
for covariance inflation [Zhang et al. 2004, their Eq.
(5)]. Different from the standard inflation method
(Anderson 2001) in which all points in the prior field
are inflated, this relaxation method only inflates the
covariance at updated points via a weighted average
between the prior perturbation and the posterior per-
turbation.

The rest of this work is presented as follows: The
methodology is briefly introduced in section 2. The re-
alism of the EnKF is examined in section 3. Section 4
compares the performance of the EnKF with 3DVAR
and to the NCEP GFS final (FNL) analysis. The benefit
of using a multischeme ensemble is further demon-
strated in section 5 via comparison to a single-scheme
experiment. Conclusions and discussions are presented
in section 6.

2. Methodology

a. The model

The same version of the Advanced Research WRF
(ARW; Skamarock et al. 2005) with two domains and
one-way nesting is used in this study as in Part III. The
coarse domain covers the contiguous United States
with 45 � 64 grid points and a grid spacing of 90 km
(Fig. 1), which is the same as that in Part III. The inner

domain is extended from covering only the central
United States in Part III (the dashed box in Fig. 1) to
encompass most of the continental United States with
115 � 82 grid points and a grid spacing of 30 km (solid
box in Fig. 1). Both model domains have 27 vertical
layers, and the model top is set at 100 hPa. Except for
the multischeme ensemble runs (refer to Table 2 of Part
III), all forecasts use the Grell–Devenyi cumulus
scheme (Grell and Devenyi 2002), WRF single-moment
(WSM) six-class microphysics with graupel (Hong et al.
2004), and the Yonsei State University (YSU) scheme
(Noh et al. 2003) for planetary boundary layer pro-
cesses. The NCEP FNL analyses are used to create the
initial and boundary conditions.

b. The EnKF and 3DVAR

The EnKF and 3DVAR methods used in this study
are the same as those in Part III (refer to sections 2b
and 2c of Part III for details). The EnKF uses an en-
semble size of 40 and the covariance relaxation method
[Zhang et al. 2004, their Eq. (5)] to inflate the analysis
error covariance with a relaxation coefficient of 0.7
(which means 70% of the perturbation of the analysis
ensemble comes directly from the prior), a value that
gives the best performance in the real-data case study
of Part III. WRF-3DVAR (Barker et al. 2004) uses the
newly generated CV � 5 (CV5) background error sta-
tistics and the National Meteorological Center (NMC)
method (Parrish and Derber 1992; Xiao and Sun 2007).
This method uses statistics describing differences be-
tween the sixty 24- and 12-h WRF forecasts valid at the
same time, performed on the fine domain, and initial-
ized twice daily (0000 and 1200 UTC) for the entire
month of May 2003. The control variables are stream-
function, velocity potential, unbalanced pressure, and

FIG. 1. Map of model domain. The solid circles denote the
rawinsonde observations to be assimilated. The dashed box shows
where the verification is performed.
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relative humidity (Xiao and Sun 2007). The CV5 option
is used for the control 3DVAR experiment because the
BES are based on the WRF forecast difference for the
preceding month, which is demonstrated to perform
slightly better than using the default BES option (CV3)
both for the case study (Part III) and for the month-
long experiment (not shown). Both data assimilation
methods are performed only in domain 2.

1) DATA TO BE ASSIMILATED

For this month-long application, only standard ra-
winsonde observations available every 12 h are assimi-
lated. Part III showed that only marginal benefit might
be gained through assimilation of additional data from
surface and profiler observations. As in Part III, the
Gaspari and Cohn (1999) fifth-order correlation func-
tion with a radius of influence of 30 grid points (i.e., 900
km) in the horizontal direction and 15 sigma levels in
the vertical direction is used for covariance localization
(based on the MCV case study examined in Part III).
Rawinsonde observation errors are height-dependent
as defaulted in WRF-3DVAR (Table 1 of Part III).

The rawinsonde observations of June 2003 go
through a quality control procedure similar to that de-
scribed in Part III. In detail, the quality control contains
two steps—basic quality control through the 3DVAR
preprocessor and so-called “errormax” checking
through the prerun of 3DVAR—to guarantee that
3DVAR and the EnKF use exactly the same observa-
tions. First, 12-hourly rawinsonde observations are pro-
cessed by the observation preprocessor of WRF-
3DVAR for basic quality control such as range, do-
main, persistency, extreme-value, and buddy
(horizontal consistency) checks. Then the FNL analysis
fields at 12-h intervals are interpolated to the WRF
model grid and used as the first guess in a prerun of
WRF-3DVAR to assimilate the observations that have
gone through the basic quality control procedure. In
the prerun, an errormax quality control is performed by
dropping the observations whose absolute differences
from the first guess are more than 5 times larger than
the corresponding observation errors. The observations
that pass the second quality control procedure will then
be assimilated in the following 3DVAR and EnKF ex-
periments. In the output file containing the ingested
observations, the original wind speed, wind direction,
and relative humidity are transformed into wind com-
ponents (u and �) and the mixing ratio of water vapor
(q). Consequently, the assimilated variables from ra-
winsondes become u, �, q, and temperature (T). The
assumed observation error of rawinsondes is the default
in the WRF-3DVAR system given in Table 1 of Part
III. Observations from 53 rawinsondes within the inner

domain are assimilated every 12 h with locations de-
noted as solid circles in Fig. 1.

2) ENSEMBLE INITIAL AND BOUNDARY

CONDITIONS

The initial reference analyses of both the coarse and
inner domains are interpolated from the FNL analyses.
The initial ensemble perturbations are generated with
balanced perturbations randomly drawn from the
WRF-3DVAR background uncertainty as described in
section 2b of Part III (refer also to Barker et al. 2004;
Barker 2005), which is also used in Houtekamer et al.
(2005). For the subsequent analysis and forecast cycles,
the initial and boundary conditions of the coarse do-
main are regenerated every 12 h using FNL analyses
that have been perturbed with the 3DVAR background
uncertainties, whereas the initial conditions of the inner
domain are recycled from the posterior of the EnKF.
Data assimilation is only performed on the 30-km inner
domain. The boundary conditions are provided by the
coarse domain ensemble through one-way nesting, as if
they were provided by a global ensemble forecast sys-
tem with the same forecast model as the inner domain.
Moreover, centering the coarse domain ensemble with
the FNL analyses every 12 h can prevent the model
from drifting away from the FNL analyses.

The relative importance of initial and boundary per-
turbations on the 12-h forecast error covariance is as-
sessed in a series of 12-h forecast experiments wherein
either the initial or boundary conditions are perturbed.
It is found that the forecast ensemble spread due to
boundary and initial perturbations on the 12-h back-
ground error covariance is approximately similar over
the verification domain (Fig. 1).

c. Experiment design

The control EnKF experiment for this month-long
test uses a multischeme ensemble (hereafter also re-
ferred to as EnKF_m; Table 1) with an ensemble size of
40 because the case study in Part III found that a mul-
tischeme ensemble performs better than a single-
scheme ensemble. The multischeme ensemble uses a
combination of three different microphysics parameter-
izations, three different cumulus parameterizations,
and three different boundary layer parameterization
schemes, the detailed configuration of which is listed in
Table 2 of Part III. EnKF_m is initiated at 0000 UTC 1
June 2003, the first observations are assimilated at 1200
UTC 1 June, and the analysis and forecast cycles con-
tinue for the entire month of June until 1200 UTC 30
June 2003.

In comparison with EnKF_m, standard WRF-3DVAR
(hereinafter also referred to as 3DVAR_WRF—note
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that 3DVAR_WRF denotes this particular experiment,
whereas WRF-3DVAR denotes the 3DVAR system in
WRF; Table 1) data assimilation is performed using
one model instead of an ensemble. 3DVAR_WRF is
started from the same time as EnKF_m, and the first
data are also assimilated after 12 h of integration. For
3DVAR_WRF, the initial reference analysis of both
domains and the subsequent initial and boundary con-
ditions of the coarse domain regenerated every 12 h are
all interpolated from the GFS FNL analysis.

EnKF_m is also compared to the GFS FNL analy-
ses—which are created with a data assimilation method
similar to 3DVAR by assimilating the whole set of op-
erational observations including satellite data (Parrish
and Derber 1992)—verified at the same times and in-
terpolated to the same WRF model grid (Fig. 1). It is
further compared with subsequent 12-h deterministic
WRF forecasts from the FNL analyses using the same
model configuration as that in 3DVAR_WRF. This ex-
periment will be referred to as FNL_GFS hereinafter
(Table 1).

d. Verification metrics

Verification metrics used in this study are similar to
those in Houtekamer et al. (2005) and Whitaker et al.
(2008). All experiments are verified against rawin-
sondes that have passed the quality control procedure
at nine standard pressure levels: 925, 850, 700, 500, 400,
300, 250, 200, and 150 hPa. To simplify the description,
the RMS fit of the verified field to rawinsonde obser-
vations is referred to as RMSE, and the RMS ensemble
standard deviation is referred to as RMS ensemble
spread. The mean denotes an average over all verifying
observations for the entire month of June 2003. In ad-
dition to the RMSE of individual variables, the root-
mean-difference total energy (RM-DTE), which com-
bines errors of u, � and T, is also used for verification.
The DTE is defined as

DTE � 0.5�u�u� � ���� � kT �T ��, �1�

where the prime denotes the difference between the
observations and the verified fields and k � Cp /Tr

(Cp � 1004.7 J kg�1 K�1 and the reference temperature
Tr � 290 K). Root-mean-difference kinetic energy
(RM-DKE) is also used to denote wind error through
combining errors from u and � by only using the first
two items on the right-hand side of Eq. (1).

This study uses several metrics in addition to RMSE
and RM-DTE. For example, bias is defined here as the
mean difference between the observation and the prior
interpolated to the observation location. Relative error
reduction is used to describe the relative performance
of data assimilation for different variables and different
experiments. The relative improvement of A over B is
defined as

�RMSEB � RMSEA��RMSEB � 100%. �2�

To be consistent with Part III, all experiments are veri-
fied in the Bow Echo and Mesoscale Convective Vortex
Experiment (BAMEX) field experiment domain
(dashed box in Fig. 1; the same area as the inner do-
main in Part III). Verification in a smaller domain will
reduce the influence of lateral boundary conditions, al-
though qualitatively similar results are also obtained if
verified over the entire nested domain 2.

3. Ensemble realism examination

In general terms, if an ensemble is sampling the dis-
tribution from which the observation is sampled, the
ensemble can be regarded as being realistic. In this sec-
tion, the realism of the ensemble is examined using
rank histograms (Anderson 1996; Hamill and Colucci
1997). A rank histogram describes the extent to which
an ensemble encompasses the verifying data by ranking
the verifying data in the sorted ensemble. It describes
the relative frequency at which a verifying observation

TABLE 1. List of primary assimilation and forecast experiments.

Experiment Description

EnKF_m The WRF ensemble for the EnKF uses different combinations of physical parameterization schemes for different
members (refer to Table 2 in Part III for detailed configuration).

EnKF_s The WRF ensemble for the EnKF uses the same combination of physical parameterization schemes for all
members.

3DVAR_WRF The control WRF-3DVAR experiment with the CV5 BES option. The WRF forecast for the prior uses the same
physical parameterizations as in EnKF_s.

FNL_GFS The 12-hourly WRF forecasts with the same configuration as in 3DVAR_WRF initializing from GFS FNL
analyses interpolated to WRF grid.

EnKF_mDF The 12-hourly single deterministic WRF forecasts with the same configuration as in 3DVAR_WRF initializing
from posterior of EnKF_m

EnKF_sDF The 12-hourly single deterministic WRF forecasts with the same configuration as in 3DVAR_WRF initializing
from posterior of EnKF_s.
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falls into categories formed by a sorted ensemble. The
reliability of an ensemble can be diagnosed by the
shape of its rank histogram. A flat shape implies that
the observation can be taken as a random member of
the ensemble, and consequently the ensemble is reli-
able. A U shape suggests the ensemble spread is insuf-
ficient, while a reversed (upside down) U shape indi-
cates that the ensemble spread is too large.

According to Hou et al. (2001), a histogram can be
regarded as fairly flat if the adjusted missing rate is
lower than 10%. To calculate the adjusted missing rate,
one must first calculate the missing rate, which is the
sum of the relative frequencies of the two extreme (the
first and last) categories. Zhu et al. (1996) defines the
adjusted missing rate as the difference between the ex-
pected missing rate [2/(N � 1), where N is the ensemble
size] and the missing rate. This gives a generalized met-
ric for the realism of ensembles with different sizes. The
rank histogram can also be used to examine the bias of
an ensemble. If an ensemble has a positive (negative)
bias, the relative frequency of the verifying observa-
tions will be shifted toward higher (lower) categories.

The histogram created with all of the observations
within the verifying domain during the month without
considering observation error (Figs. 2a–d) shows that
the prior ensemble of EnKF_m is generally reliable.
The rank histogram of q is based on observations lower
than 300 hPa because the mixing ratio of water vapor
above 300 hPa is very small, and the ensemble spread is
too small for the rank histogram to be meaningful. For
an ensemble with 40 members, the expected missing
rate is 5%, and thus the adjusted missing rates are less

than 10%. Wind components u and � have reasonable
ensemble spread, whereas T and q are slightly insuffi-
cient in their ensemble spread (Figs. 2a–d). When ob-
servation error is accounted for, all frequencies are less
than 5% (Figs. 2e–h). This result shows that the en-
semble is reasonable, though the ensemble spread is
slightly overestimated because of slightly overestimated
observation error or prior ensemble spread.

Assuming the observation error is independent of
forecast error and the model is perfect, the optimality
of the ensemble requires the innovation covariance
equal to the sum of the background error covariance
and observation error covariance (Dee 1995; Houteka-
mer et al. 2005; Whitaker et al. 2008):

��yo � Hxb��yo � Hxb�T	 � HPbHT � R, �3�

where yo denotes observation, H denotes observation
operator, xb denotes prior forecast, T denotes the trans-
pose of a matrix, Pb denotes background error covari-
ance, and R denotes observation error covariance. This
metric of ensemble realism has also been used in the
presence of model error (Houtekamer et al. 2005; Whi-
taker et al. 2008; Torn and Hakim 2008). As in the
above-mentioned studies, here only the diagonals of
both sides of Eq. (3) are considered. For this criterion,
if the innovation variance (or prior RMSE) is similar to
the sum of background and observation error variance
(or predicted RMSE; see Houtekamer et al. 2005), the
prior ensemble can be regarded as generally consistent
with the verifying observation.

In this experiment, the month-averaged predicted
RMSE (black dotted–dashed lines in Fig. 3) is generally

FIG. 2. Rank histogram for (a) u, (b) �, (c) T, and (d) q of the prior ensemble in EnKF_m. The y coordinate denotes the relative
frequency of the verifying observation. The x coordinate denotes the bins formed by the ensemble. (e)–(h) As in (a)–(d), but the
observation error is accounted for.
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larger than the prior RMSE (black solid lines in Fig. 3),
especially below 300 hPa. The maximum difference be-
tween the prior and predicted RMSE is 1 m s�1 for u
and � and 0.4 K for T. Smaller predicted RMSE is ob-
served above 300 hPa in T with a maximum magnitude
of about 0.8 K. This result is comparable to other large-
scale studies (Houtekamer et al. 2005; Whitaker et al.
2008). Houtekamer et al. (2005) demonstrates a closer
match between both sides of Eq. (3), especially in the
lower troposphere, probably because they used a sim-
plified version of 3DVAR covariance to represent the
model error. In Whitaker et al. (2008), larger deficien-
cies in the ensemble spread are observed at upper and
lower levels. The deficiency at upper levels in our study
is similar in magnitude to that observed in Whitaker et
al. (2008). The relatively larger predicted RMSE in this
study is consistent with the slightly reversed U shape of
the histogram shown in Figs. 2e–h and could be caused
by slight overestimation of both the prior ensemble
spread and the observation error, the latter being the
default in the formally released WRF-3DVAR system
(Xiao and Sun 2007).

Two additional EnKF experiments are performed
(for the first 5 days only) to further examine the dis-
crepancy between the predicted and actual prior
RMSE. One decreases the prior ensemble spread with-

out covariance relaxation; the other halves the assumed
observation error defaulted in WRF-3DVAR. The pre-
dicted RMSE in both experiments has a closer match to
the prior RMSE, but the prior RMSE in both experi-
ments is larger than that of EnKF_m over the same
period (not shown). This suggests that a better match
between predicted and actual prior RMSE may not
necessarily lead to better filter performance in the real-
data case.

4. Comparison between the EnKF and 3DVAR

a. Comparison of standard prior and posterior

Figures 4–7 show the comparison of the performance
of EnKF with WRF-3DVAR over this 1-month period.
EnKF_m in general has consistently lower RMSE in
both priors (Fig. 4) and posteriors (Fig. 5) for both
winds and thermodynamic variables (except for com-
parable RMSE for the posterior of q). EnKF_m also
generally has smaller posterior and prior RMSEs than
those of both the interpolated FNL analysis and a sub-
sequent 12-h WRF forecast from the interpolated
analysis (FNL_GFS; Figs. 4 and 5). Relative to
3DVAR_WRF, FNL_GFS has smaller prior RMSEs
but larger posterior RMSEs for T and q and compa-
rable posterior RMSEs for wind components. Further-

FIG. 3. Vertical distribution of the month-averaged RMSE (solid), predicted RMSE (dotted–dashed), and RMS
ensemble spread (dotted) of the prior for (a) u, (b) �, (c) T, and (d) q in EnKF_m (black) and EnKF_s (gray).
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FIG. 4. Time evolution of domain-averaged RMSE of the 12-hourly prior of (a) u, (b) �, (c) T, and (d) q for
EnKF_m (black solid), 3DVAR_WRF (black dashed), and FNL_GFS (gray dashed).

FIG. 5. As in Fig. 4, but for 12-hourly posterior.
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more, Fig. 6 shows that EnKF_m also consistently out-
performs 3DVAR_WRF and FNL_GFS in the month-
averaged vertical distributions of prior and posterior
RMSE. The overall domain- and monthly-averaged
prior RM-DTE of EnKF_m, 3DVAR_WRF, and
FNL_GFS is 4.26, 4.7, and 4.61 m s�1 respectively (Fig.
7). The confidence level of these RMSE differences
between experiments always exceeds 99%.

In terms of prior RM-DTE, EnKF_m outperforms
3DVAR_WRF by 9%. The degree of improvement of
EnKF_m over 3DVAR_WRF is different for different
variables. The domain-averaged prior RMSE of EnKF_
m for horizontal wind, T, and q is respectively 9%, 8%,
and 16% smaller than that of 3DVAR_WRF (Figs. 6a–
c). Figures 6d–f show consistently better posterior
of EnKF_m relative to that of 3DVAR_WRF and
FNL_GFS. In terms of posterior RMSE, EnKF_m out-
performs 3DVAR by about 25% in wind (Fig. 6d) and
9% in T, while the RMSE of q is similar in the experi-
ments. 3DVAR_WRF demonstrates smaller posterior
error than FNL_GFS in T and q, and they are compa-
rable in winds.

Forecast bias, which is primarily caused by model
error from deficient physics parameterizations (Whi-
taker et al. 2008) and can affect the performance of a
data assimilation method, is significantly smaller than
the corresponding RMSE for all experiments including

EnKF_m, 3DVAR_WRF, and FNL_GFS, with a con-
fidence level exceeding 99% (Fig. 8). Among the vari-
ables, u has consistently positive bias (Fig. 8a), � has
negative bias (Fig. 8b), and T has negative (positive)
bias above (below) 800 hPa, with the maximum bias

FIG. 7. Absolute 12-h forecast error of different experiments in
terms of RM-DTE. The gray bars are the respective RM-DTE of
EnKF_mDF and EnKF_sDF.

FIG. 6. Vertical distribution of the month-averaged (a)–(c) prior and (d)–(f) posterior RMSE of horizontal wind, T, and q for
EnKF_m (black solid), 3DVAR_WRF (black dashed), FNL_GFS (gray dashed), and EnKF_s (gray solid).
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around 200 hPa (Fig. 8c). For q, 3DVAR_WRF shows
mixed results, whereas EnKF_m (FNL_GFS) shows
generally positive (negative) bias. EnKF_m has gener-
ally smaller bias than 3DVAR_WRF and FNL_
GFS except for u. In comparison with 3DVAR_WRF,
FNL_GFS has a similar bias for wind components but a
larger bias for T and q.

b. Comparison of deterministic forecasts starting
from posteriors

In this section, 60-h forecasts starting from 12-hourly
analysis fields of all three experiments are performed.
Instead of ensemble forecasts, 60-h single, deterministic
forecasts are carried out starting from the 12-hourly
posterior (mean) analyses of EnKF_m for domain 2.
Domain 1 uses the same regenerated initial and bound-
ary conditions interpolated from FNL analysis as used
in 3DVAR_WRF and FNL_GFS. This experiment is
referred to as EnKF_mDF (Table 1).

It is found that the 12-h-forecast RM-DTE in
EnKF_mDF is larger than in priors of EnKF_m (which
is the mean of the ensemble forecast), but the RM-DTE
in EnKF_mDF is still noticeably smaller than that in
3DVAR_WRF and FNL_GFS (Fig. 7). The RMSE of
wind, T, and q at different output times (Fig. 9) shows

that EnKF_mDF has generally smaller errors than both
3DVAR_WRF and FNL_GFS, especially in T and q.
This result further demonstrates that improvement of
the EnKF over 3DVAR may have come from a better
prior estimate using the ensemble mean and/or the
flow-dependent background error covariance. Never-
theless, a large portion of the improvement appears to
have come from using an ensemble mean, some of
which may be due to the ensemble smoothing effect
discussed in Part III (their Fig. 9).

Figure 9 also shows that FNL_GFS has a consistently
smaller error in q than 3DVAR_WRF. For horizontal
wind and T, FNL_GFS has slightly smaller errors at
early stages, but it has larger errors than 3DVAR_
WRF after about 24 h of integration.

5. Comparison between multi- and single-scheme
ensembles in the EnKF

To further investigate the impact of using multiple
physical schemes in an ensemble to account for model
uncertainty from model physical parameterizations, ex-
periment EnKF_s (Table 1) uses the same set of
(single-scheme) physical parameterizations as in
3DVAR_WRF to provide a comparison with the use of
the multischeme ensemble in EnKF_m.

FIG. 8. Vertical distribution of the month-averaged bias of prior of (a) u, (b) �, (c) T, and (d) q for EnKF_m
(black solid), 3DVAR_WRF (black dashed), FNL_GFS (gray dashed), and EnKF_s (gray solid). The zero line is
plotted as a dotted line for reference.
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EnKF_s has a larger RMSE (gray versus black lines
in Fig. 3), smaller RMS ensemble spread (dotted
lines in Fig. 3), and consequently smaller predicted
RMSE (dotted–dashed lines in Fig. 3) than EnKF_m in
each layer for u, �, T, and q. The prior RMSE of En-
KF_m is 3%, 3%, 8%, and 6% smaller than that of
EnKF_s for u, �, T, and q, respectively (Figs. 6a–c), and
the improvement of EnKF_m over EnKF_s in T and q
could be partially explained by its smaller bias (Fig. 8).
This result indicates that a better match between the
innovation variance and predicted RMSE (defined in
section 3), as shown in EnKF_s, does not necessarily
lead to a smaller prior RMSE under the real-data ap-
plications when there is apparent model error. The
relatively larger predicted RMSE in EnKF_m, which is
due to its larger RMS ensemble spread, could help to
decrease the prior RMSE. Finally, EnKF_s increases
the prior RM-DTE by 0.2 m s�1 (Fig. 7) relative to
EnKF_m.

An additional experiment with the relaxation coeffi-
cient increased from 0.7 to 0.75 in EnKF_s increases the
ensemble spread of EnKF_s to be similar to EnKF_m,
but it also slightly increases the prior RMSE. This ex-

periment suggests that the performance of the single-
scheme EnKF in terms of RMSE is close to being op-
timum when the relaxation coefficient is around 0.7 for
the current study, and the better performance of
EnKF_m over EnKF_s does not merely come from a
large ensemble spread.

Better performance of EnKF_m due to using a mul-
tischeme ensemble relative to the single-scheme en-
semble can also be seen in terms of the posterior RMSE
(Figs. 6d–f). Similar to what is seen in prior RMSE,
there is also a larger improvement in T (12%) and q
(10%) than in wind (6%) in terms of the posteriors of
EnKF_m relative to those of EnKF_s. Nevertheless,
Fig. 6 also shows that even though EnKF_s has larger
error than that of EnKF_m, its errors are still generally
smaller than those of 3DVAR_WRF and FNL_GFS.

Single, deterministic 60-h forecasts (referred to as
EnKF_sDF in Table 1), which are initialized from the
12-hourly posteriors of EnKF_s (gray solid lines in Fig.
9) instead of EnKF_m, are also performed. The
monthly-averaged RM-DTE of 12-h forecasts in
EnKF_sDF is 4.61 m s�1, which is larger than that of
EnKF_mDF, smaller than 3DVAR_WRF, and compa-

FIG. 9. Month- and domain-averaged forecast RMSE of (a) wind, (b) T, and (c) q for EnKF_sDF (gray solid), FNL_GFS (gray
dashed), 3DVAR_WRF (black dashed), and EnKF_mDF (black solid).
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rable to FNL_GFS. At later forecast stages, EnKF_sDF
error is continuously comparable to or larger than that
of EnKF_mDF and generally smaller than that in
3DVAR_WRF and FNL_GFS (Fig. 9).

6. Summary and discussion

The month-long performance of a WRF-based EnKF
is examined and compared to WRF-3DVAR by con-
ducting 12-hourly real rawinsonde data assimilation in
June 2003. The ensemble uses multiple physical param-
eterization schemes to account for model parameteriza-
tion error. WRF-3DVAR uses newly generated back-
ground error statistics via the NMC method in which a
month of 12-h and 24-h forecast differences is utilized
to estimate climatological background error statistics.
To obtain stable performance of both the EnKF and
3DVAR, a new initial ensemble is created for the
coarse domain at 12-h intervals based on the GFS FNL
data for the EnKF, whereas the inner domain is con-
tinuously updated by the observational data through
forecast and data assimilation cycling.

The realism of the ensemble is examined by using a
rank histogram and by assessing the agreement be-
tween the innovation covariance and the summation of
ensemble spread and observation error. The results
show that the prior ensemble of the EnKF is generally
reasonable. In this case, the sum of variances of en-
semble and observation error does not have to be com-
parable to the innovation covariance to achieve a
smaller forecast error. Results also show that slightly
overestimated ensemble spread could help to improve
the performance of the EnKF for this month-long real-
data assimilation test.

The EnKF outperforms 3DVAR for all variables in
the troposphere for the particular time period of this
study. The prior (posterior) RM-DTE by the EnKF is
9% (25%) smaller that that of 3DVAR. Larger im-
provements are observed in q than in u, �, and T. It is
worth noting that because both the WRF model and
WRF-3DVAR are changing rapidly, the conclusions
drawn by using current systems may not be unequivo-
cally generalized.

The EnKF benefits significantly from the use of a
multischeme ensemble to account for model uncertain-
ties in subgrid physical parameterization schemes with
confidence level higher than 99%. The benefit of using
a multischeme ensemble (over a single-scheme en-
semble) is more pronounced in the thermodynamic
variables (including temperature and moisture) than in
the wind fields. The better performance in T and q
could be partially explained by their smaller bias result-
ing from the use of multischemes.

On average, the EnKF analyses lead to more accu-
rate forecasts than 3DVAR analyses when they are
used to initialize 60 consecutive, deterministic 60-h
forecast experiments for a month. Comparing the en-
semble and deterministic forecasts initiated from EnKF
analyses to those initiated with 3DVAR shows that a
large portion of the improvement appears to come from
using an ensemble mean and may be due in part to the
ensemble smoothing effect. Deterministic forecasts
starting from the EnKF analysis also consistently out-
perform forecasts initiated from the FNL analyses (in
which all operational observations, including satellite
data, have been ingested).
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